1 |
Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J]. Lancet Neurol, 2021, 20(10): 795-820.
|
2 |
Gu X, Li Y, Chen S, et al. Association of lipids with ischemic and hemorrhagic stroke: a prospective cohort study among 267 500 Chinese [J]. Stroke, 2019, 50(12): 3376-3384.
|
3 |
Hackam DG. Optimal medical management of asymptomatic carotid stenosis [J]. Stroke, 2021, 52(6): 2191-2198.
|
4 |
Gorelick PB, Wong KS, Bae HJ, et al. Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier [J]. Stroke, 2008, 39(8): 2396-2399.
|
5 |
Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments [J]. Cell, 2022, 185(10): 1630-1645.
|
6 |
Tsivgoulis G, Katsanos AH, Sandset EC, et al. Thrombolysis for acute ischaemic stroke: current status and future perspectives [J]. Lancet Neurol, 2023, 22(5): 418-429.
|
7 |
Widimsky P, Snyder K, Sulzenko J, et al. Acute ischaemic stroke: recent advances in reperfusion treatment [J]. Eur Heart J, 2023, 44(14): 1205-1215.
|
8 |
Zhou Y, He Y, Yan S, et al. Reperfusion injury is associated with poor outcome in patients with recanalization after thrombectomy [J]. Stroke, 2023, 54(1): 96-104.
|
9 |
张运, 裴月红, 傅瑜. 急性缺血性卒中静脉溶栓治疗进展 [J/OL]. 中华脑血管病杂志(电子版), 2023, 17(2): 83-88.
|
10 |
Ma Y, Liu Y, Zhang Z, et al. Significance of complement system in ischemic stroke: a comprehensive review [J]. Aging Dis, 2019, 10(2): 429-462.
|
11 |
Walport MJ. Complement. First of two parts [J]. N Engl J Med, 2001, 344(14): 1058-1066.
|
12 |
Walport MJ. Complement. Second of two parts [J]. N Engl J Med, 2001, 344(15): 1140-1144.
|
13 |
Coppin L, Sokal E, Stéphenne X. Thrombogenic risk induced by intravascular mesenchymal stem cell therapy: current status and future perspectives [J]. Cells, 2019, 8(10): 1160.
|
14 |
Harrison RA. The properdin pathway: an "alternative activation pathway" or a "critical amplification loop" for C3 and C5 activation? [J]. Semin Immunopathol, 2018, 40(1): 15-35.
|
15 |
Xie CB, Jane-Wit D, Pober JS. Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets [J]. Am J Pathol, 2020, 190(6): 1138-1150.
|
16 |
Mitaki S, Wada Y, Sheikh AM, et al. Proteomic analysis of extracellular vesicles enriched serum associated with future ischemic stroke [J]. Sci Rep, 2021, 11(1): 24024.
|
17 |
Xing Z, Wang Y, Gong K, et al. Plasma C4 level was associated with mortality, cardiovascular and cerebrovascular complications in hemodialysis patients [J]. BMC Nephrol, 2022, 23(1): 232.
|
18 |
Zhang ZG, Wang C, Wang J, et al. Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke [J]. Mol Neurobiol, 2015, 51(1): 230-239.
|
19 |
Zheng M, Wang X, Yang J, et al. Changes of complement and oxidative stress parameters in patients with acute cerebral infarction or cerebral hemorrhage and the clinical significance [J]. Exp Ther Med, 2020, 19(1): 703-709.
|
20 |
Zhang B, Yang N, Gao C. Is plasma C3 and C4 levels useful in young cerebral ischemic stroke patients? Associations with prognosis at 3 months [J]. J Thromb Thrombolysis, 2015, 39(2): 209-214.
|
21 |
Yang P, Zhu Z, Zang Y, et al. Increased serum complement c3 levels are associated with adverse clinical outcomes after ischemic stroke [J]. Stroke, 2021, 52(3): 868-877.
|
22 |
Si W, He P, Wang Y, et al. Complement complex C5b-9 levels are associated with the clinical outcomes of acute ischemic stroke and carotid plaque stability [J]. Transl Stroke Res, 2019, 10(3): 279-286.
|
23 |
Hu ZP, Wu F, Du YH, et al. Association between serum complement 1q and the associated factors of acute ischemic stroke in patients with type 2 diabetes [J]. Hum Exp Toxicol, 2023, 42: 9603271231188291.
|
24 |
Zhang X, Yin J, Shao K, et al. High serum complement component C4 as a unique predictor of unfavorable outcomes in diabetic stroke [J]. Metab Brain Dis, 2021, 36(8): 2313-2322.
|
25 |
Neglia L, Oggioni M, Mercurio D, et al. Specific contribution of mannose-binding lectin murine isoforms to brain ischemia/reperfusion injury [J]. Cell Mol Immunol, 2020, 17(3): 218-226.
|
26 |
Li L, Dong L, Xiao Z, et al. Integrated analysis of the proteome and transcriptome in a MCAO mouse model revealed the molecular landscape during stroke progression [J]. J Adv Res, 2020, 24: 13-27.
|
27 |
Lin Z, Lin H, Li W, et al. Complement component C3 promotes cerebral ischemia/reperfusion injury mediated by TLR2/NFκB activation in diabetic mice [J]. Neurochem Res, 2018, 43(8): 1599-1607.
|
28 |
Chen X, Arumugam TV, Cheng YL, et al. Combination therapy with low-dose IVIG and a C1-esterase inhibitor ameliorates brain damage and functional deficits in experimental ischemic stroke [J]. Neuromolecular Med, 2018, 20(1): 63-72.
|
29 |
Zhang LY, Pan J, Mamtilahun M, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion [J]. Theranostics, 2020, 10(1): 74-90.
|
30 |
Ahmad S, Pandya C, Kindelin A, et al. C3a receptor antagonist therapy is protective with or without thrombolysis in murine thromboembolic stroke [J]. Br J Pharmacol, 2020, 177(11): 2466-2477.
|
31 |
Wang DD, Hou XH, Li HQ, et al. Association of serum complement C1q concentration with severity of neurological impairment and infarct size in patients with acute ischemic stroke [J]. J Stroke Cerebrovasc Dis, 2020, 29(12): 105363.
|
32 |
Grossi C, Artusi C, Meroni P, et al. β2 glycoprotein I participates in phagocytosis of apoptotic neurons and in vascular injury in experimental brain stroke [J]. J Cereb Blood Flow Metab, 2021, 41(8): 2038-2053.
|
33 |
Sasaki S, Nishihira K, Yamashita A, et al. Involvement of enhanced expression of classical complement C1q in atherosclerosis progression and plaque instability: C1q as an indicator of clinical outcome [J]. PLoS One, 2022, 17(1): e0262413.
|
34 |
Van Dam-Nolen DHK, Truijman MTB, Van Der Kolk AG, et al. Carotid plaque characteristics predict recurrent ischemic stroke and TIA: the PARISK (Plaque At RISK) study [J]. JACC Cardiovasc Imaging, 2022, 15(10): 1715-1726.
|
35 |
林雨, 王艳玲. 颈动脉斑块易损性的评估与干预的研究进展 [J/OL]. 中华脑血管病杂志(电子版), 2023, 17(1): 66-69.
|
36 |
Niyonzima N, Bakke SS, Gregersen I, et al. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis [J]. EBioMedicine, 2020, 60: 102985.
|
37 |
Yurdagul AJr, Doran AC, Cai B, et al. Mechanisms and consequences of defective efferocytosis in atherosclerosis [J]. Front Cardiovasc Med, 2017, 4: 86.
|
38 |
Wicker-Planquart C, Dufour S, Tacnet-Delorme P, et al. Molecular and cellular interactions of scavenger receptor SR-F1 with complement C1q provide insights into its role in the clearance of apoptotic cells [J]. Front Immunol, 2020, 11: 544.
|
39 |
Manta CP, Leibing T, Friedrich M, et al. Targeting of scavenger receptors stabilin-1 and stabilin-2 ameliorates atherosclerosis by a plasma proteome switch mediating monocyte/macrophage suppression [J]. Circulation, 2022, 146(23): 1783-1799.
|
40 |
Rawish E, Sauter M, Sauter R, et al. Complement, inflammation and thrombosis [J]. Br J Pharmacol, 2021, 178(14): 2892-2904.
|
41 |
Sauter RJ, Sauter M, Reis ES, et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis [J]. Circulation, 2018, 138(16): 1720-1735.
|
42 |
Ahmad S, Kindelin A, Khan SA, et al. C3a receptor inhibition protects brain endothelial cells against oxygen-glucose deprivation/reperfusion [J]. Exp Neurobiol, 2019, 28(2): 216-228.
|
43 |
Li Y, Xin G, Li S, et al. PD-L1 regulates platelet activation and thrombosis via caspase-3/GSDME pathway [J]. Front Pharmacol, 2022, 13: 921414.
|
44 |
Santos-López J, De La Paz K, Fernández FJ, et al. Structural biology of complement receptors [J]. Front Immunol, 2023, 14: 1239146.
|
45 |
Aiello S, Gastoldi S, Galbusera M, et al. C5a and C5aR1 are key drivers of microvascular platelet aggregation in clinical entities spanning from aHUS to COVID-19 [J]. Blood Adv, 2022, 6(3): 866-881.
|
46 |
Cui J, Li H, Chen Z, et al. Thrombo-inflammation and immunological response in ischemic stroke: focusing on platelet-tregs interaction [J]. Front Cell Neurosci, 2022, 16: 955385.
|
47 |
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases [J]. Transl Res, 2020, 220: 1-13.
|
48 |
Loh JT, Zhang B, Teo JKH, et al. Mechanism for the attenuation of neutrophil and complement hyperactivity by MSC exosomes [J]. Cytotherapy, 2022, 24(7): 711-719.
|
49 |
Chen Y, Li X, Lin X, et al. Complement C5a induces the generation of neutrophil extracellular traps by inhibiting mitochondrial STAT3 to promote the development of arterial thrombosis [J]. Thromb J, 2022, 20(1): 24.
|
50 |
De Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship [J]. Cell Mol Immunol, 2019, 16(1): 19-27.
|
51 |
Martinod K, Wagner DD. Thrombosis: tangled up in NETs [J]. Blood, 2014, 123(18): 2768-2776.
|
52 |
Geddings JE, Mackman N. New players in haemostasis and thrombosis [J]. Thromb Haemost, 2014, 111(4): 570-574.
|
53 |
Simats A, García-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy [J]. Biochim Biophys Acta, 2016, 1862(3): 411-424.
|
54 |
Freda CT, Yin W, Ghebrehiwet B, et al. Complement component C1q initiates extrinsic coagulation via the receptor for the globular head of C1q in adventitial fibroblasts and vascular smooth muscle cells [J]. Immun Inflamm Dis, 2023, 11(1): e769.
|
55 |
Wang M, Zhang Z, Liu D, et al. Soluble adhesion molecules and functional outcome after ischemic stroke: a mendelian randomization study [J]. J Stroke Cerebrovasc Dis, 2023, 32(6): 107136.
|
56 |
Wang YC, Li X, Shen Y, et al. PERK (Protein Kinase RNA-Like ER Kinase) branch of the unfolded protein response confers neuroprotection in ischemic stroke by suppressing protein synthesis [J]. Stroke, 2020, 51(5): 1570-1577.
|
57 |
Neglia L, Fumagalli S, Orsini F, et al. Mannose-binding lectin has a direct deleterious effect on ischemic brain microvascular endothelial cells [J]. J Cereb Blood Flow Metab, 2020, 40(8): 1608-1620.
|
58 |
Orsini F, Fumagalli S, Császár E, et al. Mannose-binding lectin drives platelet inflammatory phenotype and vascular damage after cerebral ischemia in mice via IL (interleukin)-1α [J]. Arterioscler Thromb Vasc Biol, 2018, 38(11): 2678-2690.
|
59 |
吴斌, 陈清清, 陈巨罗, 等. 补体C1q和肿瘤坏死因子相关蛋白9在缺血性脑卒中患者中的表达及意义 [J]. 中华老年心脑血管病杂志, 2022, 24(1): 59-62.
|
60 |
Molnar T, Csuka D, Pusch G, et al. Associations between serum L-arginine and ficolins in the early phase of acute ischemic stroke - a pilot study [J]. J Stroke Cerebrovasc Dis, 2020, 29(8): 104951.
|
61 |
Cao L, Cobbs A, Simon RP, et al. Distinct plasma proteomic changes in male and female African American stroke patients [J]. Int J Physiol Pathophysiol Pharmacol, 2019, 11(2): 12-20.
|
62 |
Clarke AR, Christophe BR, Khahera A, et al. Therapeutic modulation of the complement cascade in stroke [J]. Front Immunol, 2019, 10: 1723.
|
63 |
Torp MK, Ranheim T, Schjalm C, et al. Intracellular complement component 3 attenuated ischemia-reperfusion injury in the isolated buffer-perfused mouse heart and is associated with improved metabolic homeostasis [J]. Front Immunol, 2022, 13: 870811.
|
64 |
Klimova N, Fearnow A, Long A, et al. NAD(+) precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms [J]. Exp Neurol, 2020, 325: 113144.
|
65 |
Wang XX, Mao GH, Li QQ, et al. Neuroprotection of NAD(+) and NBP against ischemia/reperfusion brain injury is associated with restoration of sirtuin-regulated metabolic homeostasis [J]. Front Pharmacol, 2023, 14: 1096533.
|
66 |
Gong Z, Pan J, Shen Q, et al. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury [J]. J Neuroinflammation, 2018, 15(1): 242.
|
67 |
Wang L, Ren W, Wu Q, et al. NLRP3 inflammasome activation: a therapeutic target for cerebral ischemia-reperfusion injury [J]. Front Mol Neurosci, 2022, 15: 847440.
|
68 |
Li J, Tian S, Wang H, et al. Protection of hUC-MSCs against neuronal complement C3a receptor-mediated NLRP3 activation in CUMS-induced mice [J]. Neurosci Lett, 2021, 741: 135485.
|
69 |
Dai S, Liu F, Ren M, et al. Complement inhibition targeted to injury specific neoepitopes attenuates atherogenesis in mice [J]. Front Cardiovasc Med, 2021, 8: 731315.
|
70 |
Xin Y, Hertle E, Van Der Kallen CJH, et al. C3 and alternative pathway components are associated with an adverse lipoprotein subclass profile: The CODAM study [J]. J Clin Lipidol, 2021, 15(2): 311-319.
|
71 |
Garcia-Arguinzonis M, Diaz-Riera E, Peña E, et al. Alternative C3 complement system: lipids and atherosclerosis [J]. Int J Mol Sci, 2021, 22(10): 5122.
|
72 |
Alawieh AM, Langley EF, Feng W, et al. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy [J]. J Neurosci, 2020, 40(20): 4042-4058.
|
73 |
Bhatia K, Kindelin A, Nadeem M, et al. Complement C3a receptor (C3aR) mediates vascular dysfunction, hippocampal pathology, and cognitive impairment in a mouse model of VCID [J]. Transl Stroke Res, 2022, 13(5): 816-829.
|
74 |
Wang Y, Wang B, Liu Y, et al. Inhibition of PI3K/Akt/mTOR signaling by NDRG2 contributes to neuronal apoptosis and autophagy in ischemic stroke [J]. J Stroke Cerebrovasc Dis, 2023, 32(3): 106984.
|
75 |
Jiang T, Li Y, He S, et al. Reprogramming astrocytic NDRG2/NF-κB/C3 signaling restores the diabetes-associated cognitive dysfunction [J]. EBioMedicine, 2023, 93: 104653.
|
76 |
Cao W, Lin J, Xiang W, et al. Physical exercise-induced astrocytic neuroprotection and cognitive improvement through primary cilia and mitogen-activated protein kinases pathway in rats with chronic cerebral hypoperfusion [J]. Front Aging Neurosci, 2022, 14: 866336.
|
77 |
King A, Szekely B, Calapkulu E, et al. The increased densities, but different distributions, of both C3 and S100A10 immunopositive astrocyte-like cells in Alzheimer's disease brains suggest possible roles for both A1 and A2 astrocytes in the disease pathogenesis [J]. Brain Sci, 2020, 10(8): 503.
|
78 |
Arba F, Giannini A, Piccardi B, et al. Small vessel disease and biomarkers of endothelial dysfunction after ischaemic stroke [J]. Eur Stroke J, 2019, 4(2): 119-126.
|
79 |
Jin W, Zhao J, Yang E, et al. Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A [J]. Theranostics, 2022, 12(7): 3196-3216.
|
80 |
Shu J, Fang XH, Li YJ, et al. Microglia-induced autophagic death of neurons via IL-6/STAT3/miR-30d signaling following hypoxia/ischemia [J]. Mol Biol Rep, 2022, 49(8): 7697-7707.
|
81 |
Pekna M, Pekny M. The complement system: a powerful modulator and effector of astrocyte function in the healthy and diseased central nervous system [J]. Cells, 2021, 10(7): 1812.
|
82 |
Pekna M, Siqin S, De Pablo Y, et al. Astrocyte responses to complement peptide C3a are highly context-dependent [J]. Neurochem Res, 2023, 48(4): 1233-1241.
|
83 |
Aswendt M, Wilhelmsson U, Wieters F, et al. Reactive astrocytes prevent maladaptive plasticity after ischemic stroke [J]. Prog Neurobiol, 2022, 209: 102199.
|
84 |
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
|
85 |
Stokowska A, Aswendt M, Zucha D, et al. Complement C3a treatment accelerates recovery after stroke via modulation of astrocyte reactivity and cortical connectivity [J]. J Clin Invest, 2023, 133(10): e162253.
|
86 |
Zhang FF, Zhang L, Zhao L, et al. The circular RNA Rap1b promotes Hoxa5 transcription by recruiting Kat7 and leading to increased Fam3a expression, which inhibits neuronal apoptosis in acute ischemic stroke [J]. Neural Regen Res, 2023, 18(10): 2237-2245.
|
87 |
Gutierrez J, Turan TN, Hoh BL, et al. Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment [J]. Lancet Neurol, 2022, 21(4): 355-368.
|
88 |
Zhou X, Chen X, Zhang L, et al. Mannose-binding lectin reduces oxidized low-density lipoprotein induced vascular endothelial cells injury by inhibiting LOX1-ox-LDL binding and modulating autophagy [J]. Biomedicines, 2023, 11(6): 1743.
|
89 |
Carbone F, Valente A, Perego C, et al. Ficolin-2 serum levels predict the occurrence of acute coronary syndrome in patients with severe carotid artery stenosis [J]. Pharmacol Res, 2021, 166: 105462.
|
90 |
Schoeps B, Frädrich J, Krüger A. Cut loose TIMP-1: an emerging cytokine in inflammation [J]. Trends Cell Biol, 2023, 33(5): 413-426.
|
91 |
Arjunan A, Sah DK, Woo M, et al. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome [J]. Cell Biosci, 2023, 13(1): 16.
|
92 |
Casado ME, Collado-Pérez R, Frago LM, et al. Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies [J]. Int J Mol Sci, 2023, 24(2): 1422.
|
93 |
Sotler T, Šebeštjen M. PCSK9 as an atherothrombotic risk factor [J]. Int J Mol Sci, 2023, 24(3): 1966.
|
94 |
Barakzie A, Jansen AJG, Ten Cate H, et al. Coagulation biomarkers for ischemic stroke [J]. Res Pract Thromb Haemost, 2023, 7(4): 100160.
|
95 |
Eriksson O, Hultström M, Persson B, et al. Mannose-binding lectin is associated with thrombosis and coagulopathy in critically ill COVID-19 patients [J]. Thromb Haemost, 2020, 120(12): 1720-1724.
|
96 |
Durigutto P, Macor P, Pozzi N, et al. Complement activation and thrombin generation by MBL bound to β2-glycoprotein I [J]. J Immunol, 2020, 205(5): 1385-1392.
|
97 |
Ma YH, Leng XY, Dong Y, et al. Risk factors for intracranial atherosclerosis: a systematic review and meta-analysis [J]. Atherosclerosis, 2019, 281: 71-77.
|
98 |
El Khoudary SR, Chen X, Mcconnell D, et al. Associations of HDL subclasses and lipid content with complement proteins over the menopause transition: The SWAN HDL ancillary study: HDL and complement proteins in women [J]. J Clin Lipidol, 2022, 16(5): 649-657.
|
99 |
Sereti E, Stamatelopoulos KS, Zakopoulos NA, et al. Hypertension: An immune related disorder? [J]. Clin Immunol, 2020, 212: 108247.
|
100 |
Nguyen VA, Riddell N, Crewther SG, et al. Longitudinal stroke recovery associated with dysregulation of complement system-a proteomics pathway analysis [J]. Front Neurol, 2020, 11: 692.
|
101 |
Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice [J]. Sci Transl Med, 2018, 10(441): eaao6459.
|
102 |
Surugiu R, Catalin B, Dumbrava D, et al. Intracortical administration of the complement C3 receptor antagonist trifluoroacetate modulates microglia reaction after brain injury [J]. Neural Plast, 2019, 2019: 1071036.
|
103 |
Alawieh A, Andersen M, Adkins DL, et al. Acute complement inhibition potentiates neurorehabilitation and enhances tPA-mediated neuroprotection [J]. J Neurosci, 2018, 38(29): 6527-6545.
|
104 |
Fandaros M, Joseph K, Kaplan AP, et al. gC1qR antibody can modulate endothelial cell permeability in angioedema [J]. Inflammation, 2022, 45(1): 116-128.
|
105 |
Delgardo M, Tang AJ, Tudor T, et al. Role of gC1qR as a modulator of endothelial cell permeability and contributor to post-stroke inflammation and edema formation [J]. Front Cell Neurosci, 2023, 17: 1123365.
|
106 |
Mercurio D, Piotti A, Valente A, et al. Plasma-derived and recombinant C1 esterase inhibitor: binding profiles and neuroprotective properties in brain ischemia/reperfusion injury [J]. Brain Behav Immun, 2021, 93: 299-311.
|
107 |
Shi Y, Jin Y, Li X, et al. C5aR1 Mediates the Progression of Inflammatory Responses in the Brain of Rats in the Early Stage after Ischemia and Reperfusion [J]. ACS Chem Neurosci, 2021, 12(21): 3994-4006.
|
108 |
Kumar P, Hair P, Cunnion K, et al. Classical complement pathway inhibition reduces brain damage in a hypoxic ischemic encephalopathy animal model [J]. PLoS One, 2021, 16(9): e0257960.
|
109 |
Wiesmann C, Katschke KJ, Yin J, et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation [J]. Nature, 2006, 444(7116): 217-220.
|
110 |
石艳超, 韩晋, 李强, 等. 补体C5a受体1拮抗剂对小鼠脑缺血/再灌注的保护作用 [J]. 中风与神经疾病杂志, 2022, 39(12): 1082-1085.
|
111 |
Grannonico M, Brandolini L, Varrassi G, et al. DF3016A induces increased BDNF transcription in ischemic neuroinflammation injury [J]. Brain Res, 2020, 1748: 147057.
|
112 |
Shah TA, Pallera HK, Kaszowski CL, et al. Therapeutic hypothermia inhibits the classical complement pathway in a rat model of neonatal hypoxic-ischemic encephalopathy [J]. Front Neurosci, 2021, 15: 616734.
|
113 |
Wang Y, Su Y, Lai W, et al. Salidroside restores an anti-inflammatory endothelial phenotype by selectively inhibiting endothelial complement after oxidative stress [J]. Inflammation, 2020, 43(1): 310-325.
|
114 |
Brandolini L, Grannonico M, Bianchini G, et al. The novel C5aR antagonist DF3016A protects neurons against ischemic neuroinflammatory injury [J]. Neurotox Res, 2019, 36(1): 163-174.
|
115 |
Liu Y, Wu C, Hou Z, et al. Pseudoginsenoside-F11 accelerates microglial phagocytosis of myelin debris and attenuates cerebral ischemic injury through complement receptor 3 [J]. Neuroscience, 2020, 426: 33-49.
|
116 |
Ma Y, Liu Z, Jiang L, et al. Endothelial progenitor cell transplantation attenuates synaptic loss associated with enhancing complement receptor 3-dependent microglial/macrophage phagocytosis in ischemic mice [J]. J Cereb Blood Flow Metab, 2023, 43(3): 379-392.
|
117 |
Song S, Guo L, Wu D, et al. Quantitative proteomic analysis of plasma after remote ischemic conditioning in a rhesus monkey ischemic stroke model [J]. Biomolecules, 2021, 11(8): 1164.
|
118 |
Ma Y, Jiang L, Wang L, et al. Endothelial progenitor cell transplantation alleviated ischemic brain injury via inhibiting C3/C3aR pathway in mice [J]. J Cereb Blood Flow Metab, 2020, 40(12): 2374-2386.
|
119 |
Ames RS, Lee D, Foley JJ, et al. Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models [J]. J Immunol, 2001, 166(10): 6341-6348.
|
120 |
Li XX, Kumar V, Clark RJ, et al. The "C3aR Antagonist" SB290157 is a partial C5aR2 agonist [J]. Front Pharmacol, 2020, 11: 591398.
|
121 |
Lyu Q, Pang X, Zhang Z, et al. Microglial V-set and immunoglobulin domain-containing 4 protects against ischemic stroke in mice by suppressing TLR4-regulated inflammatory response [J]. Biochem Biophys Res Commun, 2020, 522(3): 560-567.
|