1 |
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications [J]. Lancet Neurol, 2019, 18(7): 684-696.
|
2 |
刘品一, 黄丽丽, 徐运. 脑小血管病和脑微循环研究进展 [J]. 中国卒中杂志, 2017, 12(2): 132-142.
|
3 |
Dey AK, Stamenova V, Turner G, et al. Pathoconnectomics of cognitive impairment in small vessel disease: a systematic review [J]. Alzheimers Dement, 2016, 12(7): 831-845.
|
4 |
Vermeer SE, Longstreth WT, Koudstaal PJ. Silent brain infarcts: a systematic review [J]. Lancet Neurol, 2007, 6(7): 611-619.
URL
|
5 |
TerTelgte A, van Leijsen EMC, Wiegertjes K, et al. Cerebral small vessel disease: from a focal to a global perspective [J]. Nat Rev Neurol, 2018, 14(7): 387-398.
|
6 |
METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: an initiative of the Joint Programme for Neurodegenerative Disease Research [J]. Alzheimers Dement, 2016, 12(12): 1235-1249.
|
7 |
顾雨铖, 徐运. 脑小血管病与血管性认知损害:关注神经影像学 [J]. 国际脑血管病杂志, 2017, 25(3): 244-250.
|
8 |
Pasi M, van Uden IW, Tuladhar AM, et al. White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease: clinical consequences [J]. Stroke, 2016, 47(6): 1679-1684.
|
9 |
Williams OA, Zeestraten EA, Benjamin P, et al. Predicting dementia in cerebral small vessel disease using an automatic diffusion tensor image segmentation technique [J]. Stroke, 2019, 50(10): 2775-2782.
|
10 |
Prins ND, van Dijk EJ, den Heijer T, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory [J]. Brain, 2005, 128(Pt 9): 2034-2041.
|
11 |
顾雨铖, 刘任远, 秦若梦,等. 总MRI脑小血管病评分与认知功能的相关性 [J]. 国际脑血管病杂志, 2018, 26(7): 521-527.
|
12 |
Muñoz Maniega S, Meijboom R, Chappell FM, et al. Spatial gradient of microstructural changes in normal-appearing white matter in tracts affected by white matter hyperintensities in older age [J]. Front Neurol, 2019, 10: 784.
|
13 |
Geschwind N. Disconnexion syndromes in animals and man: part Ⅰ [J]. Brain, 1965, 88(2): 237-294.
|
14 |
Catani M, ffytche DH. The rises and falls of disconnection syndromes [J]. Brain, 2005, 128: 2224-2239.
|
15 |
Biesbroek JM, Weaver NA, Biessels GJ. Lesion location and cognitive impact of cerebral small vessel disease [J]. Clin Sci, 2017, 131(8): 715-728.
|
16 |
Bullmore E, Sporns O. The economy of brain network organization [J]. Nat Rev Neurosci, 2012, 13(5): 336-349.
URL
|
17 |
Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging [J]. Lancet Neurol, 2013, 12(5): 483-497.
URL
|
18 |
Ye Q, Bai F. Contribution of diffusion, perfusion and functional MRI to the disconnection hypothesis in subcortical vascular cognitive impairment [J]. Stroke Vasc Neurol, 2018, 3(3): 131-139.
|
19 |
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges [J]. Lancet Neurol, 2010, 9(7): 689-701.
URL
|
20 |
Wang S, Jiaerken Y, Yu X, et al. Understanding the association between psychomotor processing speed and white matter hyperintensity: A comprehensive multi-modality MR imaging study [J]. Hum Brain Mapp, 2020, 41(3): 605-616.
|
21 |
Nir TM, Jahanshad N, Villalon-Reina JE, et al. Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging [J]. Neuroimage Clin, 2013, 3: 180-195.
|
22 |
Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review [J]. NMR Biomed, 2002, 15: 435-455.
|
23 |
Schmahmann JD, Smith EE, Eichler FS, et al. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates [J]. Ann N Y Acad Sci, 2008, 1142: 266-309.
|
24 |
Bhadelia RA, Price LL, Tedesco KL, et al. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly [J]. Stroke, 2009, 40(12): 3816-3820.
|
25 |
Duering M, Zieren N, Herve D, et al. Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL [J]. Brain, 2011, 134: 2366-2375.
URL
|
26 |
Smith EE, Salat DH, Jeng J, et al. Correlations between MRI white matter lesion location and executive function and episodic memory [J]. Neurology, 2011, 76(17): 1492-1499.
|
27 |
de Laat KF, Tuladhar AM, van Norden AG, et al. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease [J]. Brain, 2011, 134: 73-83.
URL
|
28 |
Kantarci K, Senjem ML, Avula R, et al. Diffusion tensor imaging and cognitive function in older adults with no dementia [J]. Neurology, 2011, 77(1): 26-34.
|
29 |
Kerchner GA, Racine CA, Hale S, et al. Cognitive processing speed in older adults: relationship with white matter integrity [J]. PLoS One, 2012, 7(11): e50425.
|
30 |
Biesbroek JM, Kuijf HJ, van der Graaf Y, et al. Association between subcortical vascular lesion location and cognition: a voxel-based and tract-based lesion-symptom mapping study. The SMART-MR study [J]. PLoS One, 2013, 8(4): e60541.
|
31 |
Duering M, Gonik M, Malik R, et al. Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment [J]. Neuroimage, 2013, 66: 177-183.
URL
|
32 |
Duering M, Gesierich B, Seiler S, et al. Strategic white matter tracts for processing speed deficits in age-related small vessel disease [J]. Neurology, 2014, 82(22): 1946-1950.
URL
|
33 |
Tuladhar AM, van Norden AG, de Laat KF, et al. White matter integrity in small vessel disease is related to cognition [J]. Neuroimage Clin, 2015, 7: 518-524.
|
34 |
Biesbroek JM, Weaver NA, Hilal S, et al. Impact of strategically located white matter hyperintensities on cognition in memory clinic patients with small vessel disease [J]. PloS One, 2016, 11(11): e0166261.
|
35 |
O'Sullivan M, Barrick TR, Morris RG, et al. Damage within a network of white matter regions underlies executive dysfunction in CADASIL [J]. Neurology, 2005, 65(10): 1584-1590.
|
36 |
van der Holst HM, Tuladhar AM, Zerbi V, et al. White matter changes and gait decline in cerebral small vessel disease [J]. Neuroimage Clin, 2018, 17: 731-738.
|
37 |
Ghanavati T, Smitt MS, Lord SR, et al. Deep white matter hyperintensities, microstructural integrity and dual task walking in older people [J]. Brain Imaging Behav, 2018, 12(5): 1488-1496.
|
38 |
Poole VN, Wooten T, Iloputaife I, et al. Compromised prefrontal structure and function are associated with slower walking in older adults [J]. Neuroimage Clin, 2018, 20: 620-626.
|
39 |
Chen HF, Huang LL, Li HY, et al. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment [J]. CNS Neurosci Ther, 2020, 26(5): 576-588.
|
40 |
Mamiya PC, Richards TL, Kuhl PK. Right forceps minor and anterior thalamic radiation predict executive function skills in young bilingual adults [J]. Front Psychol, 2018, 9: 118.
|
41 |
Sasson E, Doniger GM, Pasternak O, et al. Structural correlates of cognitive domains in normal aging with diffusion tensor imaging [J]. Brain Struct Funct, 2012, 217(2): 503-515.
URL
|
42 |
Perry ME, McDonald CR, Hagler DJ, et al. White matter tracts associated with set-shifting in healthy aging [J]. Neuropsychologia, 2009, 47(13): 2835-2842.
URL
|
43 |
Wen W, Zhu W, He Y, et al. Discrete neuroanatomical networks are associated with specific cognitive abilities in old age [J]. J Neurosci, 2011, 31(4): 1204-1212.
|
44 |
Penke L, Munoz Maniega S, Murray C, et al. A general factor of brain white matter integrity predicts information processing speed in healthy older people [J]. J Neurosci, 2010, 30(22): 7569-7574.
|
45 |
O'Sullivan M, Jones DK, Summers PE, et al. Evidence for cortical "disconnection" as a mechanism of age-related cognitive decline [J]. Neurology, 2001, 57(4): 632-638.
|
46 |
Johnson NF, Gold BT, Brown CA, et al. Endothelial function is associated with white matter microstructure and executive function in older adults [J]. Front Aging Neurosci, 2017, 9: 255.
|
47 |
Cummings JL. Frontal-subcortical circuits and human behavior [J]. Arch Neurol, 1993, 50(8): 873-880.
|
48 |
Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study [J]. Cereb Cortex, 2005, 15(6): 854-869.
|
49 |
Barbey AK, Colom R, Solomon J, et al. An integrative architecture for general intelligence and executive function revealed by lesion mapping [J]. Brain, 2012, 135: 1154-1164.
URL
|
50 |
Rizvi B, Narkhede A, Last BS, et al. The effect of white matter hyperintensities on cognition is mediated by cortical atrophy [J]. Neurobiol Aging, 2018, 64: 25-32.
|
51 |
Chen X, Huang L, Ye Q, et al. Disrupted functional and structural connectivity within default mode network contribute to WMH-related cognitive impairment [J]. Neuroimage Clin, 2019, 24: 102088.
|
52 |
Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update [J]. J Psychosom Res, 2002, 53(2): 647-654.
|
53 |
Dichgans M, Markus HS, Salloway S, et al. Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL [J]. Lancet Neurol, 2008, 7(4): 310-318.
URL
|
54 |
黄丽丽, 杨丹, 徐运. 前列腺素及其类似物治疗和预防脑小血管病的可能性 [J]. 国际脑血管病杂志, 2019(1): 37-43.
|