1 |
胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021 [J]. 中国卒中杂志, 2021, 16(7): 716-726.
|
2 |
黄勇华, 赵弘轶. 脑小血管病的现状和展望 [J/OL]. 中华脑血管病杂志(电子版), 2020, 14(1): 33-36.
|
3 |
Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration [J]. Cell Commun Signal, 2019, 17(1): 26.
|
4 |
Grubb S, Lauritzen M, Aalkjær C. Brain capillary pericytes and neurovascular coupling [J]. Comp Biochem Physiol A Mol Integr Physiol, 2021, 254: 110893.
|
5 |
Zambach SA, Cai C, Helms HCC, et al. Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion [J]. Proc Natl Acad Sci U S A, 2021, 118(26): e2023749118.
|
6 |
Cai C, Fordsmann JC, Jensen SH, et al. Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses [J]. Proc Natl Acad Sci U S A, 2018, 115(25): e5796-e5804.
|
7 |
Rungta RL, Chaigneau E, Osmanski BF, et al. Vascular compartmentalization of functional hyperemia from the synapse to the pia [J]. Neuron, 2018, 99(2): 362-375.
|
8 |
Chow BW, Nuñez V, Kaplan L, et al. Caveolae in CNS arterioles mediate neurovascular coupling [J]. Nature, 2020, 579(7797): 106-110.
|
9 |
Goedicke-Fritz S, Kaistha A, Kacik M, et al. Evidence for functional and dynamic microcompartmentation of Cav-1/TRPV4/K(Ca) in caveolae of endothelial cells [J]. Eur J Cell Biol, 2015, 94(7-9): 391-400.
|
10 |
Sperti M, Arba F, Acerbi A, et al. Determinants of cerebral collateral circulation in acute ischemic stroke due to large vessel occlusion [J]. Front Neurol, 2023, 14: 1181001.
|
11 |
Liu L, Guo M, Lv X, et al. Role of transient receptor potential vanilloid 4 in vascular function [J]. Front Mol Biosci, 2021, 8: 677661.
|
12 |
Hainsworth AH, Markus HS, Schneider JA. Cerebral small vessel disease, hypertension, and vascular contributions to cognitive impairment and dementia [J]. Hypertension, 2024, 81(1): 75-86.
|
13 |
Jiang S, Wu S, Zhang S, et al. Advances in understanding the pathogenesis of lacunar stroke: from pathology and pathophysiology to neuroimaging [J]. Cerebrovasc Dis, 2021, 50(5): 588-596.
|
14 |
Staehr C, Giblin JT, Gutiérrez-Jiménez E, et al. Neurovascular uncoupling is linked to microcirculatory dysfunction in regions outside the ischemic core following ischemic stroke [J]. J Am Heart Assoc, 2023, 12(11): e029527.
|
15 |
Zhang D, Ruan J, Peng S, et al. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling [J]. Nat Neurosci, 2024, 27(2): 232-248.
|
16 |
Rüwald JM, Jacobs C, Scheidt S, et al. Laser-based techniques for microcirculatory assessment in orthopedics and trauma surgery: past, present, and future [J]. Ann Surg, 2019, 270(6): 1041-1048.
|
17 |
Goldberg J, Miller DR, Dimanche A, et al. Intraoperative laser speckle contrast imaging to assess vessel flow in neurosurgery: a pilot study [J]. Neurosurgery, 2023. Online ahead of print.
|
18 |
Miller DR, Ashour R, Sullender CT, et al. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery [J]. Neurophotonics, 2022, 9(2): 021908.
|
19 |
Chen Q, Song H, Yu J, et al. Current development and applications of super-resolution ultrasound imaging [J]. Sensors (Basel), 2021, 21(7): 2417.
|
20 |
Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging [J]. Nature, 2015, 527(7579): 499-502.
|
21 |
Lowerison MR, Sekaran NVC, Zhang W, et al. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse [J]. Sci Rep, 2022, 12(1): 619.
|
22 |
Bourquin C, Poree J, Lesage F, et al. In vivo pulsatility measurement of cerebral microcirculation in rodents using dynamic ultrasound localization microscopy [J]. IEEE Trans Med Imaging, 2022, 41(4): 782-792.
|
23 |
Soulioti DE, Espindola D, Dayton PA, et al. Super-resolution imaging through the human skull [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2020, 67(1): 25-36.
|
24 |
Demené C, Robin J, Dizeux A, et al. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients [J]. Nat Biomed Eng, 2021, 5(3): 219-228.
|
25 |
Favre H, Pernot M, Tanter M, et al. Boosting transducer matrix sensitivity for 3D large field ultrasound localization microscopy using a multi-lens diffracting layer: a simulation study [J]. Phys Med Biol, 2022, 67(8): 085009.
|
26 |
Favre H, Pernot M, Tanter M, et al. Transcranial 3D ultrasound localization microscopy using a large element matrix array with a multi-lens diffracting layer: anin vitrostudy [J]. Phys Med Biol, 2023, 68(7): 075003.
|
27 |
Demeulenaere O, Bertolo A, Pezet S, et al. In vivo whole brain microvascular imaging in mice using transcranial 3D ultrasound localization microscopy [J]. EBioMedicine, 2022, 79: 103995.
|
28 |
Van Sloun RJG, Solomon O, Bruce M, et al. Super-resolution ultrasound localization microscopy through deep learning [J]. IEEE Trans Med Imaging, 2021, 40(3): 829-839.
|
29 |
Yan J, Zhang T, Broughton-Venner J, et al. Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking [J]. IEEE Trans Med Imaging, 2022, 41(8): 1938-1947.
|
30 |
Ma H, Yang Y, Gao M, et al. A novel rat model of cerebral small vessel disease and evaluation by super-resolution ultrasound imaging [J]. J Neurosci Methods, 2022, 379: 109673.
|
31 |
Dong B, Yao J, Deán-Ben XL. Editorial: advances in photoacoustic neuroimaging [J]. Front Neurosci, 2022, 16: 859515.
|
32 |
Steinberg I, Huland DM, Vermesh O, et al. Photoacoustic clinical imaging [J]. Photoacoustics, 2019, 14: 77-98.
|
33 |
Zhu B, Li H, Xie C, et al. Photoacoustic microscopic imaging of cerebral vessels for intensive monitoring of metabolic acidosis [J]. Mol Imaging Biol, 2023, 25(4): 659-670.
|
34 |
Zhong X, Liang Y, Wang X, et al. Free-moving-state microscopic imaging of cerebral oxygenation and hemodynamics with a photoacoustic fiberscope [J]. Light Sci Appl, 2024, 13(1): 5.
|