1 |
Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis [J]. BMJ, 2010, 341: c3666.
|
2 |
Sam K, Crawley AP, Poublanc J, et al. Vascular dysfunction in leukoaraiosis [J]. AJNR Am J Neuroradiol, 2016, 37(12): 2258-2264.
|
3 |
Longstreth WT, Manolio TA, Arnold A, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study [J]. Stroke, 1996, 27(8): 1274-1282.
|
4 |
Han F, Zhai FF, Wang Q, et al. Prevalence and risk factors of cerebral small vessel disease in a Chinese population-based sample [J]. J Stroke, 2018, 20(2): 239-246.
|
5 |
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑小血管病诊治共识 [J]. 中华神经科杂志, 2015, 48(10): 838-844.
|
6 |
Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update [J]. Nat Rev Neurol, 2015, 11(3): 157-165.
|
7 |
Ren XM, Qiu SW, Liu RY, et al. White matter lesions predict recurrent vascular events in patients with transient ischemic attacks [J]. Chin Med J (Engl), 2018, 131(2): 130-136.
|
8 |
Jorgensen DR, Shaaban CE, Wiley CA, et al. A population neuroscience approach to the study of cerebral small vessel disease in midlife and late life: an invited review [J]. Am J Physiol Heart Circ Physiol, 2018, 314(6): H1117-H1136.
|
9 |
Gottesman RF, Fornage M, Knopman DS, et al. Brain aging in African-Americans: the Atherosclerosis Risk in Communities (ARIC) experience [J]. Curr Alzheimer Res, 2015, 12(7): 607-613.
|
10 |
Van Dijk EJ, Prins ND, Vrooman HA, et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study [J]. Stroke, 2008, 39(10): 2712-2719.
|
11 |
Brickman AM, Schupf N, Manly JJ, et al. APOE epsilon4 and risk for Alzheimer's disease: do regionally distributed white matter hyperintensities play a role? [J]. Alzheimers Dement, 2014, 10(6): 619-629.
|
12 |
Dickie DA, Ritchie SJ, Cox SR, et al. Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936 [J]. Neurobiol Aging, 2016, 42: 116-123.
|
13 |
Godin O, Tzourio C, Maillard P, et al. Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon Magnetic Resonance Imaging Study [J]. Circulation, 2011, 123(3): 266-273.
|
14 |
Vuorinen M, Spulber G, Damangir S, et al. Midlife CAIDE dementia risk score and dementia-related brain changes up to 30 years later on magnetic resonance imaging [J]. J Alzheimers Dis, 2015, 44(1): 93-101.
|
15 |
Shinto L, Lahna D, Murchison CF, et al. Oxidized products of omega-6 and omega-3 long chain fatty acids are associated with increased white matter hyperintensity and poorer executive function performance in a cohort of cognitively normal hypertensive older adults [J]. J Alzheimers Dis, 2020, 74(1): 65-77.
|
16 |
Debette S, Seshadri S, Beiser A, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline [J]. Neurology, 2011, 77(5): 461-468.
|
17 |
Nagai M, Hoshide S, Takahashi M, et al. Sleep duration, kidney function, and their effects on cerebral small vessel disease in elderly hypertensive patients [J]. Am J Hypertens, 2015, 28(7): 884-893.
|
18 |
Ramos AR, Dong C, Rundek T, et al. Sleep duration is associated with white matter hyperintensity volume in older adults: the Northern Manhattan Study [J]. J Sleep Res, 2014, 23(5): 524-530.
|
19 |
Satizabal CL, Zhu YC, Mazoyer B, et al. Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon Study [J]. Neurology, 2012, 78(10): 720-727.
|
20 |
Lee KO, Woo MH, Chung D, et al. Differential impact of plasma homocysteine levels on the periventricular and subcortical white matter hyperintensities on the brain [J]. Front Neurol, 2019, 10: 1174.
|
21 |
Fernando MS, Simpson JE, Matthews F, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury [J]. Stroke, 2006, 37(6): 1391-1398.
|
22 |
Hainsworth AH, Minett T, Andoh J, et al. Neuropathology of white matter lesions, blood-brain barrier dysfunction, and dementia [J]. Stroke, 2017, 48(10): 2799-2804.
|
23 |
Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities [J]. Neurology, 2008, 71(11): 804-811.
|
24 |
Joutel A, Chabriat H. Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms [J]. Clin Sci (Lond), 2017, 131(8): 635-651.
|
25 |
Schmidt R, Schmidt H, Haybaeck J, et al. Heterogeneity in age-related white matter changes [J]. Acta Neuropathol, 2011, 122(2): 171-185.
|
26 |
Gouw AA, Seewann A, Van Der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations [J]. J Neurol Neurosurg Psychiatry, 2011, 82(2): 126-135.
|
27 |
Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses [J]. Neuropathol Appl Neurobiol, 2007, 33(4): 410-419.
|
28 |
Swardfager W, Yu D, Scola G, et al. Peripheral lipid oxidative stress markers are related to vascular risk factors and subcortical small vessel disease [J]. Neurobiol Aging, 2017, 59: 91-97.
|
29 |
Kynast J, Lampe L, Luck T, et al. White matter hyperintensities associated with small vessel disease impair social cognition beside attention and memory [J]. J Cereb Blood Flow Metab, 2018, 38(6): 996-1009.
|
30 |
王兴, 首都医科大学附属北京天坛医院神经病学中心, 国家神经系统疾病临床医学研究中心, 等. 脑小血管病脑白质高信号与认知障碍的关系研究进展 [J]. 中国卒中杂志, 2019, 14(11): 1146-1152.
|
31 |
Kloppenborg RP, Nederkoorn PJ, Geerlings MI, et al. Presence and progression of white matter hyperintensities and cognition: a meta-analysis [J]. Neurology, 2014, 82(23): 2127-2138.
|
32 |
Ai Q, Pu YH, Sy C, et al. Impact of regional white matter lesions on cognitive function in subcortical vascular cognitive impairment[J]. Neurol Res, 2014, 36(5): 434-43.
|
33 |
Ding X, Wu J, Zhou Z, et al. Specific locations within the white matter and cortex are involved in the cognitive impairments associated with periventricular white matter lesions (PWMLs) [J]. Behav Brain Res, 2015, 289: 9-18.
|
34 |
胡瑞红, 柴长风, 范存秀, 等. 不同脑白质损伤部位对老年轻度认知障碍的影响 [J]. 中国卒中杂志, 2019, 14(9): 889-894.
|
35 |
Poggesi A, Pantoni L, Inzitari D, et al. 2001-2011: A decade of the LADIS (Leukoaraiosis And DISability) study: what have we learned about white matter changes and small-vessel disease? [J]. Cerebrovasc Dis, 2011, 32(6): 577-588.
|
36 |
Wang R, Fratiglioni L, Laveskog A, et al. Do cardiovascular risk factors explain the link between white matter hyperintensities and brain volumes in old age? A population-based study [J]. Eur J Neurol, 2014, 21(8): 1076-1082.
|
37 |
Habes M, Erus G, Toledo JB, et al. Regional tract-specific white matter hyperintensities are associated with patterns to aging-related brain atrophy via vascular risk factors, but also independently [J]. Alzheimers Dement (Amst), 2018, 10: 278-284.
|
38 |
Duan D, Li C, Shen L, et al. Regional gray matter atrophy coexistent with occipital periventricular white matter hyper intensities [J]. Front Aging Neurosci, 2016, 8: 214.
|
39 |
Arvanitakis Z, Fleischman DA, Arfanakis K, et al. Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment [J]. Brain Struct Funct, 2016, 221(4): 2135-2146.
|
40 |
Swardfager W, Cogo-Moreira H, Masellis M, et al. The effect of white matter hyperintensities on verbal memory: Mediation by temporal lobe atrophy [J]. Neurology, 2018, 90(8): e673-e682.
|
41 |
Rizvi B, Narkhede A, Last BS, et al. The effect of white matter hyperintensities on cognition is mediated by cortical atrophy [J]. Neurobiol Aging, 2018, 64: 25-32.
|
42 |
Li Q, Zhao LQ, Hu FY. Characteristics of cognitive impairment and the resting state functional MRI in patients with leukoaraiosis [J]. Zhonghua Yi Xue Za Zhi, 2017, 97(45): 3529-3533.
|
43 |
Ding X, Ding J, Hua B, et al. Abnormal cortical functional activity in patients with ischemic white matter lesions: A resting-state functional magnetic resonance imaging study [J]. Neurosci Lett, 2017, 644: 10-17.
|
44 |
Ye Q, Chen X, Qin R, et al. Enhanced regional homogeneity and functional connectivity in subjects with white matter hyperintensities and cognitive impairment [J]. Front Neurosci, 2019, 13: 695.
|
45 |
Ding JR, Ding X, Hua B, et al. Altered connectivity patterns among resting state networks in patients with ischemic white matter lesions [J]. Brain Imaging Behav, 2018, 12(5): 1239-1250.
|
46 |
Chen H, Huang L, Yang D, et al. Nodal global efficiency in front-parietal lobe mediated Periventricular White Matter Hyperintensity (PWMH)-related cognitive impairment [J]. Front Aging Neurosci, 2019, 11: 347.
|
47 |
Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research [J]. Neuron, 2006, 51(5): 527-539.
|
48 |
Maillard P, Carmichael O, Harvey D, et al. FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities [J]. AJNR Am J Neuroradiol, 2013, 34(1): 54-61.
|
49 |
Chen HF, Huang LL, Li HY, et al. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment [J]. CNS Neurosci Ther, 2020, 26(5): 576-588.
|
50 |
Yang D, Huang L, Luo C, et al. Impaired structural network properties caused by white matter hyperintensity related to cognitive decline [J]. Front Neurol, 2020, 11: 250.
|
51 |
Zhang Y, Schuff N, Camacho M, et al. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements [J]. PLoS One, 2013, 8(6): e66367.
|
52 |
Zhang CE, Wong SM, Van De Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease [J]. Neurology, 2017, 88(5): 426-432.
|
53 |
Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction [J]. Nat Med, 2019, 25(2): 270-276.
|
54 |
Wong SM, Jansen JFA, Zhang CE, et al. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease [J]. Neurology, 2019, 92(15): e1669-e1677.
|
55 |
Li Y, Li M, Zhang X, et al. Higher blood-brain barrier permeability is associated with higher white matter hyperintensities burden [J]. J Neurol, 2017, 264(7): 1474-1481.
|
56 |
Wang S, Yuan J, Guo X, et al. Neurochemical correlates of cognitive dysfunction in patients with leukoaraiosis: a proton magnetic resonance spectroscopy study [J]. Neurol Res, 2012, 34(10): 989-997.
|
57 |
Li C, Ling X, Liu S, et al. Abnormalities of magnetic resonance spectroscopy and diffusion tensor imaging are correlated with executive dysfunction in patients with ischemic leukoaraiosis [J]. J Clin Neurosci, 2012, 19(5): 718-722.
|