切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 92 -99. doi: 10.11817/j.issn.1673-9248.2022.02.006

论著

CT平扫血肿分级方式联合多危险因素对自发性脑出血早期血肿增大的预测作用
庄坚炜1, 陈向林1,(), 侯文仲1, 胡杨真1, 毛振敏1, 黄俊士1   
  1. 1. 511518 广州医科大学附属第六医院脑血管病科
  • 收稿日期:2021-09-16 出版日期:2022-04-01
  • 通信作者: 陈向林
  • 基金资助:
    2022广东省医学科研基金(A2022224)

Prediction of hematoma enlargement in the early stage of spontaneous intracerebral hemorrhage by CT plain scan grading combined with multiple risk factors

Jianwei Zhuang1, Xianglin Chen1,(), Wenzhong Hou1, Yangzhen Hu1, Zhenmin Mao1, Junshi Huang1   

  1. 1. Department of Cerebrovascular Disease of the Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou 511518, China
  • Received:2021-09-16 Published:2022-04-01
  • Corresponding author: Xianglin Chen
引用本文:

庄坚炜, 陈向林, 侯文仲, 胡杨真, 毛振敏, 黄俊士. CT平扫血肿分级方式联合多危险因素对自发性脑出血早期血肿增大的预测作用[J]. 中华脑血管病杂志(电子版), 2022, 16(02): 92-99.

Jianwei Zhuang, Xianglin Chen, Wenzhong Hou, Yangzhen Hu, Zhenmin Mao, Junshi Huang. Prediction of hematoma enlargement in the early stage of spontaneous intracerebral hemorrhage by CT plain scan grading combined with multiple risk factors[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2022, 16(02): 92-99.

目的

探究CT平扫血肿的形态、密度分级方式联合多个危险因素对自发性脑出血(SICH)早期血肿增大的预测作用。

方法

纳入2015年1月至2019年12月广州医科大学附属第六医院脑血管病区收治的采用保守治疗的脑出血患者150例,全部病例在起病3 h内完成首次CT扫描。以24 h内复查CT平扫结果是否出现血肿相对体积增大33%或绝对体积增大6 ml为标准,分为血肿增大组(65例)和非血肿增大组(85例)。采用Logistics回归模型分析患者一般情况、既往服药史、实验室检查指标、Barras等学者提出的血肿CT平扫分级方式等各项指标对脑出血患者早期血肿增大的影响并建立回归模型。绘制受试者操作特征(ROC)曲线分析CT平扫血肿形态、密度分级方式联合多个危险因素的预测模型的预测效能。

结果

最终纳入149例(血肿增大组64例、非血肿增大组85例)的研究数据。Logistics回归分析显示:既往使用抗凝药物(OR=4.855,95%CI:1.102~21.38,P=0.037)、既往抗血小板聚集药物(OR=3.831,95%CI:1.089~13.472,P=0.036)、格拉斯哥昏迷评分(OR=0.797,95%CI:0.671~0.947,P=0.01)、高密度脂蛋白(OR=0.116,95%CI:0.025~0.534,P=0.006)、血肿CT扫描Barras血肿形态(OR=2.481,95%CI:1.429~4.308,P=0.001)和密度分级结果(OR=2.28,95%CI:1.312~3.963,P=0.003)均为早期血肿增大的独立预测因素。ROC曲线分析提示Barras血肿形态和密度分级联合多个危险因素构建的回归方程[曲线下面积(AUC)=0.907,特异度80.0%,敏感度89.1%)]有更好的预测效能,单独应用Barras形态分级方式(AUC=0.746,特异度55.3%,敏感度82.8%)或密度分级方式(AUC=0.694,特异度55.3%,敏感度76.6%)或二者联合(AUC=0.799,特异度81.3%,敏感度62.4%)的预测效能均差于回归方程。

结论

既往使用抗凝药物、抗血小板聚集药物,格拉斯哥昏迷评分,血清高密度脂蛋白浓度,Barras等学者提出的血肿CT扫描分级评分,均为SICH患者出现早期血肿增大的独立预测因素。应用Barras等学者提出的血肿CT平扫分级联合多危险因素对SICH早期血肿增大的预测效能较单一指标高。

Objective

To explore the prediction effect of hematoma enlargement in the early stage of spontaneous intracerebral hemorrhage (SICH) by combining the morphology and density classification method of CT plain scan with multiple risk factors proposed by Barras et al.

Methods

A total of 150 patients with cerebral hemorrhage treated conservatively from January 2015 to December 2019 in the cerebrovascular ward were retrospectively included, and all patients completed their first CT scan within 3 hours of the onset of disease, in the Sixth Affiliated Hospital of Guangzhou Medical University. According to whether the relative volume of hematoma increased by 33% or absolute volume increased by 6 ml on CT plain scan within 24 hours, the patients were divided into the increased hematoma group (65 cases) and the non-increased hematoma group (85 cases). Logistics regression was used to analyze the value of various indicators, including the general situation of patients, medication history, laboratory indicators, unenhanced CT plain scan, examination results, and other indicators, as well as the hematoma grading proposed by Barras et al, for the prediction of early hematoma enlargement in patients with spontaneous intracerebral hemorrhage. By drawing receiver operating characteristic (ROC) curve, the prediction efficiency of CT plain scan hematoma morphology and density classification combined with multiple risk factors was analyzed.

Results

Totally, 149 cases were included (64 in the hematoma enlargement group and 85 in the non-hematoma enlargement group). Logistic regression analysis showed that previous use of anticoagulants (OR=4.855, 95%CI: 1.102-21.38, P=0.037), previous anti-platelet aggregation (OR=3.831,95%CI:1.089-13.472, P=0.036), Glasgow coma scale (OR=0.797, 95%CI: 0.671-0.947, P=0.01), high-density lipoprotein (OR 0.116, 95%CI:0.025-0.534, P=0.006), non-enhanced CT scan results of hematoma showed high-grade Barras hematoma morphology (OR=2.481, 95%CI: 1.429-4.308, P=0.001), and density grading results (OR=2.28, 95%CI:1.312-3.963, P=0.003) were independent risk factors for early hematoma enlargement. ROC curve analysis indicated that the regression equation (AUC=0.907, specificity 80.0%, sensitivity 89.1%) proposed by Barras combined with multiple risk factors showed better predictive efficiency. Barras morphology grading (AUC=0.746, specificity 55.3%, sensitivity 82.8%) or density grading (AUC=0.694, specificity 55.3%, sensitivity 76.6%) or a combination of the two (AUC=0.799, specificity 81.3%, sensitivity 62.4%) was used.

Conclusion

Long-term history of anticoagulant and anti-platelet medication, Glasgow coma score, serum high-density lipoprotein concentration, and hematoma CT scan grading score proposed by Barras were independent predictors of increased risk of early hematoma in SICH patients. The application of CT plain scan hematoma grading method proposed by Barras combined with multiple risk factors to predict hematoma enlargement in the early stage of spontaneous intracerebral hemorrhage is more effective than a single index.

图1 Barras分级标准结合临床影像资料(图中斜线左为形态分级、右为密度分级)。图a血肿形态规则,血肿边缘无不规则小血肿,为规则形血肿(Barras等级Ⅰ级);图b血肿形态基本为椭圆形,形态为规则形血肿(Barras形态等级Ⅰ级),伴黑洞征(白色箭头),密度均质型(Barras密度等级Ⅱ级);图c不规则形血肿被规则形低密度区域包裹,属于不规则形(形态等级Ⅱ级)及密度不均型(密度等级Ⅲ级)血肿;图d血肿形态规则(Barras形态等级Ⅰ级),混杂征或液平,右侧高密度影(白色箭头)与其下方低密度区域(黑色箭头)分界线较清晰(等级Ⅲ-Ⅳ);图e血肿形态不规则,血肿边缘凸起较大小血肿(黑色箭头),3个与主血肿无连接的小血肿(白色箭头)(Barras等级Ⅴ级),岛征,密度分级为Ⅲ级;图f主血肿左侧1较大小血肿与其不相连接(白色箭头),卫星征,主血肿边缘多处凸出,形态不规则(Barras形态等级Ⅴ级);图g血肿形态不规则(Barras形态等级Ⅴ级),但密度基本均质,未见明显低密度灶;图h形态不规则形(Barras形态等级Ⅴ级),多发低密度灶,密度不均质型(Barras密度等级Ⅳ级),漩涡征低密度(黑色箭头),低密度灶(白色箭头)
表1 自发性脑出血患者脑出血并血肿增大各危险因素组间差异分析结果
因素 血肿增大组(65例) 非血肿增大组(85例) 统计值 P
男性[例(%)] 42(64.6) 56(65.9) χ2=0.026 1.000
吸烟史[例(%)] 15(23.1) 25(29.4) χ2=0.756 0.458
饮酒史[例(%)] 8(12.3) 7(8.2) χ2=0.679 0.679
抗凝史[例(%)] 19(29.2) 9(10.6) χ2=10.040 0.002
抗血小板聚集药物史[例(%)] 20(30.8) 11(12.9) χ2=11.066 0.001
基底节出血[例(%)] 48(73.9) 67(78.8) χ2=0.510 0.560
放射冠出血[例(%)] 22(33.8) 16(18.8) χ2=13.045 <0.001
丘脑出血[例(%)] 26(40.0) 27(31.8) χ2=7.551 0.009
其余部位出血[例(%)] 10(15.4) 6(7.1) χ2=2.679 0.116
多部位重叠出血[例(%)] 15(23.1) 19(22.4) χ2=0.011 1.000
伴有破入脑室系统出血[例(%)] 36(55.4) 17(20.0) χ2=13.518 <0.001
年龄[岁,MQR)] 64(54,73) 57(51,75) Z=-0.584 0.561
GCS评分[分,MQR)] 8(5,12) 14(10,15) Z=-5.476 <0.001
住院部收缩压(mmHg,
x¯
±s
168.59±31.07 167.06±22.57 t=-0.334 0.739
住院部舒张压(mmHg,
x¯
±s
95.48±20.23 93.15±17.34 t=-0.760 0.448
急诊收缩压(mmHg,
x¯
±s
169.04±35.02 175.02±27.91 t=1.130 0.261
急诊舒张压(mmHg,
x¯
±s
96.51±18.43 99.35±20.3 t=0.882 0.379
FPG[mmol/L,M(QR 8.02(6.40,9.91) 6.34(5.50,8.48) Z=-4.043 <0.001
CHOL[mmol/L,M(QR 4.06(3.30,5.60) 4.69(4.04,5.11) Z=-2.365 0.018
TG[mmol/L,M(QR 1.24(0.82,1.82) 1.10(0.83,1.46) Z=-1.126 0.261
HDL[mmol/L,M(QR 1.08(0.89,1.38) 1.30(1.02,1.53) Z=-2.528 0.011
LDL[mmol/L,M(QR 2.47(1.79,3.37) 3.15(2.63,3.61) Z=-3.228 0.001
APTT(s,
x¯
±s
26.37±5.82 26.43±5.11 t=0.069 0.945
PT[s,M(QR 11.4(10.7,12.5) 11.5(10.8,12.6) Z=-0.596 0.553
INR[M(QR] 0.96(0.91,1.05) 0.96(0.91,1.04) Z=-0.03 0.977
HB(g/L,
x¯
±s
129.8±20.17 135.05±19.69 t=1.601 0.112
PLT[×109/L,M(QR 238(187,285) 228(192,267) Z=-0.197 0.845
Ca2+(mmol/L,
x¯
±s
2.23±0.16 2.26±0.13 t=1.167 0.245
初始血肿体积[ml,M(QR 20(10,30) 14(8,20) Z=-3.513 <0.001
形态分级[例(%)] χ2=29.788 <0.001

13(20.0) 42(49.4)

21(32.3) 27(31.8)

16(24.6) 12(14.1)

10(15.4) 3(3.5)

5(7.7) 1(1.2)
密度分级[例(%)] χ2=19.415 <0.001

17(26.2) 45(52.9)

25(38.5) 29(34.1)

17(26.2) 8(9.4)

4(6.2) 2(2.4)

2(3.1) 1(1.2)
表2 自发性脑出血患者早期血肿增大的二分类Logistics回归危险因素分析(联合Barras血肿分级量表)
图3 不同方式预测自发性脑出血患者早期血肿增大的受试者操作特征曲线
表3 不同方式预测自发性脑出血患者早期血肿增大的效能对比
1
Al-Shahi Salman R, Frantzias J, Lee RJ, et al. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data [J]. Lancet Neurol, 2018, 17(10): 885-894.
2
Brouwers HB, Chang Y, Falcone GJ, et al. Predicting hematoma expansion after primary intracerebral hemorrhage [J]. JAMA Neurol, 2014, 71(2): 158-164.
3
蔡宾, 彭斌. 脑出血血肿扩大的研究进展 [J/OL]. 中华脑血管病杂志(电子版), 2021, 15(2): 77-82.
4
Morotti A, Boulouis G, Romero JM, et al. Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion [J]. Neurology, 2017, 89(6): 548-554.
5
黄怀忠, 向斌, 邹胜. 高血压脑出血患者早期血肿扩大的影响因素及预后研究 [J]. 实用心脑肺血管病杂志, 2016, 24(S1): 80-82.
6
Barras CD, Tress BM, Christensen S, et al. Density and shape as CT predictors of intracerebral hemorrhage growth [J]. Stroke, 2009, 40(4): 1325-1331.
7
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2019) [J]. 中华神经科杂志, 2019, 52(12): 994-1005.
8
Sansing LH, Kaznatcheeva EA, Perkins CJ, et al. Edema after intracerebral hemorrhage: correlations with coagulation parameters and treatment [J]. J Neurosurg, 2003, 98(5): 985-992.
9
Blacquiere D, Demchuk AM, Al-Hazzaa M, et al. Intracerebral hematoma morphologic appearance on noncontrast computed tomography predicts significant hematoma expansion [J]. Stroke, 2015, 46(11): 3111-3116.
10
Morotti A, Boulouis G, Dowlatshahi D, et al. Standards for detecting, interpreting, and reporting noncontrast computed tomographic markers of intracerebral hemorrhage expansion [J]. Ann Neurol, 2019, 86(4): 480-492.
11
Yu Z, Zheng J, Li M, et al. Determining the optimal shape-related indicator on noncontrast computed tomography for predicting hematoma expansion in spontaneous intracerebral hemorrhage [J]. World Neurosurgery, 2019, 121: e584-e588.
12
Yu Z, Ma L, Zheng J, et al. Comparison of hematoma density heterogeneity and ultraearly hematoma growth in predicting hematoma expansion in patients with spontaneous intracerebral hemorrhage [J]. J Neurol Sci, 2017, 379: 44-48.
13
张林山, 黄磊, 王丽琨, 等. 脑出血早期血肿扩大影像学特征研究进展 [J/OL]. 中华脑血管病杂志(电子版), 2021, 15(2): 104-107.
14
Huang YW, Yang MF. Combining investigation of imaging markers (island sign and blend sign) and clinical factors in predicting hematoma expansion of intracerebral hemorrhage in the basal ganglia [J]. World Neurosurgery, 2018, 120: e1000-e1010.
15
Cao D, Li Q, Fu P, et al. Early hematoma enlargement in primary intracerebral hemorrhage [J]. Current Drug Targets, 2017, 18(12): 1345-1348.
16
Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage [J]. Lancet, 2009, 373(9675): 1632-1644.
17
邓平, 吴晓牧. 高血压脑出血病理生理机制研究进展 [J]. 中华脑血管病杂志(电子版), 2010, 4(4): 267-278.
18
Fisher CM. Pathological observations in hypertensive cerebral hemorrhage [J]. J Neuropathol Exp Neurol, 1971, 30(3): 536-550.
19
Flaherty ML, Kissela B, Woo D, et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage [J]. Neurology, 2007, 68(2): 116-121.
20
Vidale S. Antithrombotic drugs and risk of hemorrhagic stroke in the general population [J]. Neurology, 2014, 82(13): 1193.
21
Ilyas C, Beyer GM, Dutton RP, et al. Recombinant factor VIIa for warfarin-associated intracranial bleeding [J]. J Clin Anesth, 2008, 20(4): 276-279.
22
Altintas O, Duruyen H, Baran G, et al. The relationship of hematoma growth to red blood cell distribution width in patients with hypertensive intracerebral hemorrhage [J]. Turkish Neurosurgery, 2017, 27(3): 368-373.
23
寿碧江, 李东芳. 自发性脑出血预后量表的研究现状 [J/OL]. 中华脑血管病杂志(电子版), 2020, 14(3): 167-171.
24
Cai B, Peng L, Wang ZB, et al. Association between serum lipid and hematoma expansion after spontaneous intracerebral hemorrhage in Chinese patients [J]. J Stroke Cerebrovasc Dis, 2020, 29(6): 104793.
25
Wang X, Li S, Bai Y, et al. Inverse association of plasma level of high-density lipoprotein cholesterol with intracerebral hemorrhage [J]. J Lipid Res, 2011, 52(9): 1747-1754.
[1] 徐昌林, 程浩, 刘从国, 高涢, 李毅, 乔媛媛, 陈晟. Rosa定位钻孔血肿清除术与经验性定位颅骨钻孔血肿清除术治疗自发性脑出血的疗效对比分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 97-101.
[2] 汤志辉, 黄巍, 罗飞, 王文浩. 自发性脑出血患者流行病学特点与死亡影响因素分析[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 224-228.
[3] 张寒, 丁涟沭. CT联合征象及纹理分析在预测自发性脑出血血肿扩大中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 242-246.
[4] 唐辉, 陈勇, 邵川, 罗孝全, 王潇娅, 邹成功, 文国虹, 何家全. 南充市自发性脑出血发病与气温的相关性及滞后效应[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 202-207.
[5] 裴园利, 柏鲁宁. 自发性脑出血血肿扩大的影响因素与预后分析[J]. 中华神经创伤外科电子杂志, 2020, 06(01): 27-30.
[6] 聂兆波, 康全利, 李伟, 马赛男. 微创穿刺引流术治疗幕上自发性脑出血的临床效果分析[J]. 中华神经创伤外科电子杂志, 2018, 04(03): 157-160.
[7] 谭可, 李锦平, 彭玉涛, 吴文汧, 杨子文, 汪阳, 陶立波, 刘畅. 机器人辅助立体定向血肿引流术治疗自发性脑出血疗效及卫生经济学评价[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 205-214.
[8] 谭潇潇, 付雄洁, 俞晓波, 严锋, 陈高. 不同微创手术方式治疗自发性脑出血疗效对比:单中心回顾性分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 21-26.
[9] 于强, 黄好峰, 李习珍, 胡海成, 李春, 张成, 韩超, 王如海, 曹祥记. 深静脉穿刺包行经皮气管切开术在神经重症患者中的应用效果[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(05): 281-284.
[10] 康德智. 出血性脑血管病诊疗新进展[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(02): 65-68.
[11] 张钦, 杨清武. 自发性脑出血动物模型的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(02): 64-69.
[12] 寿碧江, 李东芳. 自发性脑出血预后量表的研究现状[J]. 中华脑血管病杂志(电子版), 2020, 14(03): 167-171.
阅读次数
全文


摘要