切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 154 -158. doi: 10.11817/j.issn.1673-9248.2023.02.012

综述

昼夜节律与沉默信息调节因子1在缺血性脑卒中神经保护中的相互作用研究进展
史静1, 郝晨曦1, 何苗1, 李伟荣1,()   
  1. 1. 030009 太原,山西医科大学第九临床医学院(附属太原中心医院)神经内科
  • 收稿日期:2022-08-27 出版日期:2023-04-01
  • 通信作者: 李伟荣
  • 基金资助:
    山西省医学重点科研项目(2021XM14)

Research progress in interaction of circadian rhythm and silent information regulator 1 in neuroprotection against ischemic stroke

Jing Shi1, Chenxi Hao1, Miao He1, Weirong Li1,()   

  1. 1. Department of Neurology, Ninth Clinical Medical College(Affiliated Taiyuan Central Hospital), Shanxi Medical University, Taiyuan 030009, China
  • Received:2022-08-27 Published:2023-04-01
  • Corresponding author: Weirong Li
引用本文:

史静, 郝晨曦, 何苗, 李伟荣. 昼夜节律与沉默信息调节因子1在缺血性脑卒中神经保护中的相互作用研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 154-158.

Jing Shi, Chenxi Hao, Miao He, Weirong Li. Research progress in interaction of circadian rhythm and silent information regulator 1 in neuroprotection against ischemic stroke[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(02): 154-158.

缺血性脑卒中的发生率和致死率多在清晨达到高峰,这种变化提示昼夜节律紊乱与急性缺血性脑卒中密切相关。虽然有研究认为,清晨血压升高(所谓的晨峰)、血小板聚集增加以及内皮功能的钝化与清晨缺血性脑卒中的发生相关,但其分子机制在很大程度上是未知的。近期研究发现,去乙酰酶沉默信息调节因子1(SIRT1)参与生物钟基因转录的调控过程。并且,SIRT1通过去乙酰化作用来抑制氧化应激、炎性反应、自噬及细胞凋亡等,在缺血性脑卒中的发生发展及治疗中发挥重要作用。因此,探讨昼夜节律和SIRT1之间的复杂关联以及他们在调节缺血性脑卒中神经保护中的相互作用非常必要。控制和定时管理SIRT1及生物钟蛋白或可成为缺血性脑卒中防治的新靶点。

The incidence and the mortality of ischemic stroke mostly peak in the early morning. This phenomenon suggests that circadian rhythm disorder is closely related to acute ischemic stroke. Although some studies believe that the rise of blood pressure (the so-called morning peak), the increase of platelet aggregation, and the passivation of endothelial function are related to the occurrence of early morning ischemic stroke, its molecular mechanism is largely unknown. Recent studies have found that deacetylase silent information regulator 1 (SIRT1) is involved in regulating clock gene transcription. Moreover, SIRT1 plays an important role in the occurrence, development and treatment of ischemic stroke by deacetylation to inhibit oxidative stress, inflammatory response, autophagy, and apoptosis. Therefore, it is necessary to explore the complex association between circadian rhythm and SIRT1 and their interaction in regulating neuroprotection against ischemic stroke.

图1 生物钟基因的反馈途径 注:CLOCK为昼夜节律运动输出周期故障蛋白;BMAL1为脑和肌肉组织芳香烃受体核转运蛋白的类似蛋白1;Per为阻遏蛋白;Cry为隐花色素蛋白;RORE为视黄酸相关孤儿受体反应元件;ROR为类视黄醇相关孤儿受体;Rev为内源性反转录病毒
图2 沉默信息调节因子1介导的去乙酰化作用 注:NAD+为烟酰胺腺嘌呤二核苷酸
图3 SIRT1通过CLOCK/BMAL1复合物的去乙酰化调控转录过程 注:CLOCK为昼夜节律运动输出周期故障蛋白;BMAL1为脑和肌肉组织芳香烃受体核转运蛋白的类似蛋白1;Per为阻遏蛋白;Cry为隐花色素蛋白;NAD+为烟酰胺腺嘌呤二核苷酸,SIRT1为沉默信息调节因子1,Nucleus为细胞核,ER为内质网
1
Ahad MA, Kumaran KR, Ning T, et al. Insights into the neuropathology of cerebral ischemia and its mechanisms [J]. Rev Neurosci, 2020, 31(5): 521-538.
2
Beker MC, Caglayan B, Yalcin E, et al. Time-of-day dependent neuronal injury after ischemic stroke: implication of circadian clock transcriptional factor Bmal1 and survival kinase AKT [J]. Mol Neurobiol, 2018, 55(3): 2565-2576.
3
王梧苏, 褚瑰燕, 杨公社. Sirt1与生物钟的相互调控 [J]. 中国生物化学与分子生物学报, 2015, 31(7): 674-678.
4
Jiao F, Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases [J]. Oxid Med Cell Longev, 2020, 2020: 6782872.
5
Juste YR, Kaushik S, Bourdenx M, et al. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock [J]. Nat Cell Biol, 2021, 23(12): 1255-1270.
6
Chi-Castañeda D, Ortega A. The role of mammalian glial cells in circadian rhythm regulation [J]. Neural Plast, 2017, 2017: 8140737.
7
Soni SK, Basu P, Singaravel M, et al. Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1 [J]. Cell Mol Life Sci, 2021, 78(6): 2503-2515.
8
McGinnis GR, Young ME. Circadian regulation of metabolic homeostasis: causes and consequences [J]. Nat Sci Sleep, 2016, 8: 163-180.
9
Allada R, Bass J. Circadian mechanisms in medicine [J]. N Engl J Med, 2021, 384(6): 550-561.
10
Lo EH, Albers GW, Dichgans M, et al. Circadian biology and stroke [J]. Stroke, 2021, 52(6): 2180-2190.
11
Schilperoort M, van den Berg R, Bosmans LA, et al. Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE*3-Leiden.CETP mice [J]. J Pineal Res, 2020, 68(1): e12614.
12
Bonten TN, Snoep JD, Assendelft WJ, et al. Time-dependent effects of aspirin on blood pressure and morning platelet reactivity: a randomized cross-over trial [J]. Hypertension, 2015, 65(4): 743-750.
13
Sutton CE, Finlay CM, Raverdeau M, et al. Loss of the molecular clock in myeloid cells exacerbates T cell-mediated CNS autoimmune disease [J]. Nat Commun, 2017, 8(1): 1923.
14
Peek CB, Levine DC, Cedernaes J, et al. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle [J]. Cell Metab, 2017, 25(1): 86-92.
15
Kobayashi M, Morinibu A, Koyasu S, et al. A circadian clock gene, PER2, activates HIF-1 as an effector molecule for recruitment of HIF-1α to promoter regions of its downstream genes [J]. FEBS J, 2017, 284(22): 3804-3816.
16
Durgan DJ, Crossland RF, Bryan RM. The rat cerebral vasculature exhibits time-of-day-dependent oscillations in circadian clock genes and vascular function that are attenuated following obstructive sleep apnea [J]. J Cereb Blood Flow Metab, 2017, 37(8): 2806-2819.
17
Cuddapah VA, Zhang SL, Sehgal A. Regulation of the blood-brain barrier by circadian rhythms and sleep [J]. Trends Neurosci, 2019, 42: 500-510.
18
Wojcik M, Mac-Marcjanek K, Wozniak LA. Physiological and pathophysiological functions of SIRT1 [J]. Mini Rev Med Chem, 2009, 9(3): 386-394.
19
Chen C, Zhou M, Ge Y, et al. SIRT1 and aging related signaling pathways [J]. Mech Ageing Dev, 2020, 187: 111215.
20
Zhang JF, Zhang YL, Wu YC. The role of Sirt1 in ischemic stroke: pathogenesis and therapeutic strategies [J]. Front Neurosci, 2018, 12: 833.
21
Ye P, Li W, Huang X, et al. BMAL1 regulates mitochondrial homeostasis in renal ischaemia-reperfusion injury by mediating the SIRT1/PGC-1α axis [J]. J Cell Mol Med, 2022, 26(7): 1994-2009.
22
Qiu Z, Ming H, Zhang Y, et al. The protective role of Bmal1-regulated autophagy mediated by HDAC3/SIRT1 pathway in myocardial ischemia/reperfusion injury of diabetic rats [J]. Cardiovasc Drugs Ther, 2022, 36(2): 229-243.
23
Zhou B, Zhang Y, Zhang F, et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1 [J]. Hepatology, 2014, 59(6): 2196-206.
24
Liu J, Zhou B, Yan M, et al. CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1 in male mice [J]. Endocrinology, 2016, 157(6): 2259-2269.
25
Ashimori A, Nakahata Y, Sato T, et al. Attenuated SIRT1 activity leads to PER2 cytoplasmic localization and dampens the amplitude of Bmal1 promoter-driven circadian oscillation [J]. Front Neurosci, 2021, 15: 647589.
26
Wang Y, Lv D, Liu W, et al. Disruption of the circadian clock alters antioxidative defense via the SIRT1-BMAL1 pathway in 6-OHDA-induced models of Parkinson's disease [J]. Oxid Med Cell Longev, 2018, 2018: 4854732.
27
Sharma A, Sethi G, Tambuwala MM, et al. Circadian rhythm disruption and Alzheimer's disease: the dynamics of a vicious cycle [J]. Curr Neuropharmacol, 2021, 19(2): 248-264.
28
Osum M, Serakinci N. Impact of circadian disruption on health; SIRT1 and Telomeres [J]. DNA Repair (Amst), 2020, 96: 102993.
29
Sadria M, Layton AT. Aging affects circadian clock and metabolism and modulates timing of medication [J]. iScience, 2021, 24(4): 102245.
30
Tong X, Zhang D, Arthurs B, et al. Palmitate inhibits SIRT1-dependent BMAL1/CLOCK interaction and disrupts circadian gene oscillations in hepatocytes [J]. PLoS One, 2015, 10(6): e0130047.
31
Maiese K. Cognitive impairment and dementia: gaining insight through circadian clock gene pathways [J]. Biomolecules, 2021, 11(7): 1002.
32
Sarmah D, Datta A, Kaur H, et al. Sirtuin-1-mediated NF-κB pathway modulation to mitigate inflammasome signaling and cellular apoptosis is one of the neuroprotective effects of intra-arterial mesenchymal stem cell therapy following ischemic stroke [J]. Stem Cell Rev Rep, 2022, 18(2): 821-838.
33
Zhao Y, Zhang J, Zheng Y, et al. NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway [J]. J Neuroinflammation, 2021, 18(1): 207.
34
Teertam SK, Jha S, Babu PP. Up-regulation of Sirt1/miR-149-5p signaling may play a role in resveratrol induced protection against ischemia via p53 in rat brain [J]. J Clin Neurosci, 2020, 72: 402-411.
35
董珊珊, 李明月, 邹伟. SIRT1在脑卒中介导的不同信号通路及其作用研究进展 [J].中风与神经疾病杂志, 2021, 38(6): 557-559.
[1] 韩珊珊, 徐琰, 陈卿, 杨钰坪, 明佳, 周妮娅, 李雪, 刘科. 近日节律紊乱与乳腺癌的关系[J]. 中华乳腺病杂志(电子版), 2023, 17(02): 102-106.
[2] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[3] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[4] 任香凝, 郑晓明. 缺血性脑卒中与外周免疫应答的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 175-179.
[5] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[6] 徐志嘉, 贾振宇, 赵林波, 刘圣, 施海彬, 曹月洲. 高敏肌钙蛋白T动态变化在晚时间窗内进行血管内治疗的急性缺血性脑卒中患者中的预测价值[J]. 中华介入放射学电子杂志, 2023, 11(01): 42-47.
[7] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
[8] 邓颖, 黄山, 胡慧秀, 孙超. 老年缺血性脑卒中患者危险因素聚集情况分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 344-349.
[9] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
[10] 张运. 缺血性脑卒中取栓治疗新进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 0-.
[11] 王晖, 张淑娟, 周宝华, 杨琼, 罗永梅. 基于卒中单元的缺血性脑卒中静脉溶栓模式的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 150-153.
[12] 邱佳敏, 蒋惠怡, 陶涛. 丹参酮ⅡA治疗急性缺血性脑卒中动物模型效果的Meta分析[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 136-144.
[13] 黎丹丹, 程峙娟, 刘旭, 陈未平, 殷敏, 郭华, 涂江龙. 急性后循环进展性缺血性卒中患者血管内治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 112-123.
[14] 俞刘珍雄, 张康睿, 杨若蕊, 刘学春, 王龙, 吴竹青, 吴君仓. 维生素D水平与接受静脉溶栓治疗的缺血性卒中患者预后的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 94-101.
[15] 李昕, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化危险因素的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 9-15.
阅读次数
全文


摘要