切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 441 -450. doi: 10.3877/cma.j.issn.1673-9248.2025.05.012

综述

脑细胞外间隙探测及其在脑血管病诊治中的研究进展
成雨萌1,2,3, 于娜4, 谈瀚博1, 汤奕1, 傅瑜5, 魏一飞6,(), 韩鸿宾1,2,3,()   
  1. 1 100191 北京大学医学部医学技术研究院
    2 100191 北京大学第三医院放射科
    3 100191 北京大学第三医院磁共振成像设备与技术北京市重点实验室
    4 100191 北京大学临床医学高等研究院
    5 100191 北京大学第三医院神经内科
    6 341000 江西 赣州,赣南医学院药学院
  • 收稿日期:2025-02-10 出版日期:2025-10-01
  • 通信作者: 魏一飞, 韩鸿宾
  • 基金资助:
    国家自然科学基金重大项目(62394314,62394312); 国家卫生健康委员会医药卫生科技发展研究中心“脑卒中防治技术研究”课题(WKZX2023CZ0303); 北京大学第三医院临床队列建设项目(BYSYDL2023014)

Advances in probing of brain extracellular space and its application in the diagnosis and treatment of cerebrovascular diseases

Yumeng Cheng1,2,3, Na Yu4, Hanbo Tan1, Yi Tang1, Yu Fu5, Yifei Wei6,(), Hongbin Han1,2,3,()   

  1. 1 Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
    2 Department of Radiology, Peking University Third Hospital, Beijing 100191, China
    3 Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing 100191, China
    4 Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
    5 Department of Neurology, Peking University Third Hospital, Beijing 100191, China
    6 School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
  • Received:2025-02-10 Published:2025-10-01
  • Corresponding author: Yifei Wei, Hongbin Han
引用本文:

成雨萌, 于娜, 谈瀚博, 汤奕, 傅瑜, 魏一飞, 韩鸿宾. 脑细胞外间隙探测及其在脑血管病诊治中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(05): 441-450.

Yumeng Cheng, Na Yu, Hanbo Tan, Yi Tang, Yu Fu, Yifei Wei, Hongbin Han. Advances in probing of brain extracellular space and its application in the diagnosis and treatment of cerebrovascular diseases[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2025, 19(05): 441-450.

脑细胞外间隙(ECS)是大脑的重要组成部分,是脑细胞生存和发挥功能的直接环境,但该间隙尚未被人们完全认识及利用,其在脑血管病中的作用及潜在价值尚未被完全发掘。本文旨在综述脑ECS相关研究进展,总结现有的脑ECS探测技术并介绍其在脑血管病诊治研究中的具体应用。随着研究的逐步深入,国内科学家已经开始探索利用该间隙作为给药途径或经外科手术促进该间隙的废物清除等脑血管病诊治新方法,未来值得期待。

The brain extracellular space (ECS) is a crucial component of the brain, serving as the immediate environment supporting neuronal survival and function. However, its full significance—particularly in the context of cerebrovascular diseases—remains underexplored and underutilized. This review summarizes recent advances in brain ECS research, highlights current detection techniques, and explores its emerging applications in the diagnosis and treatment of cerebrovascular disorders. Notably, as research in this field deepens, Chinese scientists have begun to investigate innovative approaches, such as utilizing the ECS for drug delivery and enhancing metabolic waste clearance via surgical interventions. These developments offer promising avenues for advancing the management of cerebrovascular diseases in the future.

1
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives [J]. Int J Mol Sci, 2020, 21(20): 7609.
2
Ding J, Zhou D, Sui M, et al. The effect of normobaric oxygen in patients with acute stroke: a systematic review and Meta-analysis [J]. Neurol Res, 2018, 40(6): 433-444.
3
Esposito E, Li W, Mandeville ET, et al. Potential circadian effects on translational failure for neuroprotection [J]. Nature, 2020, 582(7812): 395-398.
4
Tønnesen J, Hrabĕtová S, Soria FN. Local diffusion in the extracellular space of the brain [J]. Neurobiol Dis, 2023, 177: 105981.
5
Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space [J]. Proc Natl Acad Sci, 2006, 103(14): 5567-5572.
6
Lei Y, Han H, Yuan F, et al. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications [J]. Prog Neurobiol, 2017, 157: 230-246.
7
Thevalingam D, Naik AA, Hrabe J, et al. Brain extracellular space of the naked mole-rat expands and maintains normal diffusion under ischemic conditions [J]. Brain Res, 2021, 1771: 147646.
8
Colbourn R, Naik A, Hrabetova S. ECS dynamism and its influence on neuronal excitability and seizures [J]. Neurochem Res, 2019, 44(5): 1020-1036.
9
Song G, Luo T, Dong L, et al. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression [J]. Braz J Med Biol Res, 2017, 50(7): e5403.
10
Zámecník J, Vargová L, Homola A, et al. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours [J]. Neuropathol Appl Neurobiol, 2004, 30(4): 338-350.
11
Fei X, Zhang Y, Mei Y, et al. Degradation of FA reduces Aβ neurotoxicity and Alzheimer-related phenotypes [J]. Mol Psychiatry, 2021, 26(10): 5578-5591.
12
Cai X, He Q, Wang W, et al. Epidural pulsation accelerates the drainage of brain interstitial fluid [J]. Aging Dis, 2023, 14(1): 219.
13
Lian J, Yang L, Tan H, et al. A novel neuroprotective method against ischemic stroke by accelerating the drainage of brain interstitial fluid [J]. Sci China Life Sci, 2024, 67(10): 2213-2223.
14
Nicholson C, Hrabětová S. Brain extracellular space: the final frontier of neuroscience [J]. Biophys J, 2017, 113(10): 2133-2142.
15
Syková E, Nicholson C. Diffusion in brain extracellular space [J]. Physiol Rev, 2008, 88(4): 1277-1340.
16
Nicholson C. Diffusion and related transport mechanisms in brain tissue [J]. Rep Prog Phys, 2001, 64: 815.
17
Wang A, Wang R, Cui D, et al. The drainage of interstitial fluid in the deep brain is controlled by the integrity of myelination [J]. Aging Dis, 2019, 10(5): 937.
18
Zhao G, Han H, Yang J, et al. Brain interstitial fluid drainage and extracellular space affected by inhalational isoflurane: in comparison with intravenous sedative dexmedetomidine and pentobarbital sodium [J]. Sci China Life Sci, 2020, 63(9): 1363-1379.
19
Caley DW, Maxwell DS. Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex [J]. J Comp Neurol, 1970, 138(1): 31-47.
20
Wang R, Han H, Shi K, et al. The alteration of brain interstitial fluid drainage with myelination development [J]. Aging Dis, 2021, 12(7): 1729-1740.
21
Lücke A, Mayer T, Altrup U, et al. Simultaneous and continuous measurement of free concentration of valproate in blood and extracellular space of rat cerebral cortex [J]. Epilepsia, 1994, 35(5): 922-926.
22
Yang S, Wang Y, Li K, et al. Extracellular space diffusion analysis in the infant and adult rat striatum using magnetic resonance imaging [J]. Int J Dev Neurosci, 2016, 53: 1-7.
23
Rice ME, Okada YC, Nicholson C. Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission [J]. J Neurophysiol, 1993, 70(5): 2035-2044.
24
Vargová L, Syková E. Extracellular space diffusion and extrasynaptic transmission [J]. Physiol Res, 2008, 57 Suppl 3: S89-S99.
25
Syková E, Mazel T, Hasenöhrl RU, et al. Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus [J]. Hippocampus, 2002, 12(2): 269-279.
26
Cheng Y, Liu J, Tian F, et al. New insight into the mechanism of neurochemical imbalance in multiple sclerosis: abnormal transportation of brain extracellular space [J]. Aging Dis, 2025. Online ahead of print.
27
Syková E, Mazel T, Simonová Z. Diffusion constraints and neuron-glia interaction during aging [J]. Exp Gerontol, 1998, 33(7-8): 837-851.
28
Shi C, Lei Y, Han H, et al. Transportation in the interstitial space of the brain can be regulated by neuronal excitation [J]. Sci Rep, 2015, 5(1): 17673.
29
Zhang Y, Sun L, Liu E, et al. The olfactory stimulation slows down the substance clearance in the extracellular space of the hippocampus in rat brain [J]. Biochem Biophys Res Commun, 2019, 515(3): 429-435.
30
Li Y, Han H, Shi K, et al. The mechanism of downregulated interstitial fluid drainage following neuronal excitation [J]. Aging Dis, 2020, 11(6): 1407.
31
Sherpa AD, Xiao F, Joseph N, et al. Activation of β-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume [J]. Synapse, 2016, 70(8): 307-316.
32
Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain [J]. Science, 2013, 342(6156): 373-377.
33
Gao Y, Han H, Du J, et al. Early changes to the extracellular space in the hippocampus under simulated microgravity conditions [J]. Sci China Life Sci, 2022, 65(3): 604-617.
34
De Santis S, Cosa-Linan A, Garcia-Hernandez R, et al. Chronic alcohol consumption alters extracellular space geometry and transmitter diffusion in the brain [J]. Sci Adv, 2020, 6(26): eaba0154.
35
Szentistvanyi I, Patlak CS, Ellis RA, et al. Drainage of interstitial fluid from different regions of rat brain [J]. Am J Physiol, 1984, 246(6 Pt 2): F835-F844.
36
Becker NH, Hirano A, Zimmerman HM. Observations of the distribution of exogenous peroxidase in the rat cerebrum [J]. J Neuropathol Exp Neurol, 1968, 27(3): 439-452.
37
Cserr HF, Cooper DN, Milhorat TH. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus [J]. Exp Eye Res, 1977, 25: 461-473.
38
Rennels ML, Gregory TF, Blaumanis OR, et al. Evidence for a 'Paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space [J]. Brain Res, 1985, 326(1): 47-63.
39
Geer CP, Grossman SA. Interstitial fluid flow along white matter tracts: a potentially important mechanism for the dissemination of primary brain tumors [J]. J Neurooncol, 1997, 32(3): 193-201.
40
Weller RO, Kida S, Zhang ET. Pathways of fluid drainage from the brain - morphological aspects and immunological significance in rat and man [J]. Brain Pathol, 1992, 2(4): 277-284.
41
Cserr HF, Ostrach LH. Bulk flow of interstitial fluid after intracranial injection of Blue Dextran 2000 [J]. Exp Neurol, 1974, 45(1): 50-60.
42
Zhang ET, Richards HK, Kida S, et al. Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain [J]. Acta Neuropathol, 1992, 83(3): 233-239.
43
Nicholson C, Phillips JM. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum [J]. J Physiol, 1981, 321(1): 225-257.
44
Odackal J, Colbourn R, Odackal NJ, et al. Real-time iontophoresis with tetramethylammonium to quantify volume fraction and tortuosity of brain extracellular space [J]. J Vis Exp, 2017(125): 55755.
45
Nicholson C, Kamali-Zare P, Tao L. Brain extracellular space as a diffusion barrier [J]. Comput Vis Sci, 2011, 14(7): 309-325.
46
Kaur G, Hrabetova S, Guilfoyle DN, et al. Characterizing molecular probes for diffusion measurements in the brain [J]. J Neurosci Methods, 2008, 171(2): 218-225.
47
Walters SH, Robbins EM, Michael AC. Modeling the kinetic diversity of dopamine in the dorsal striatum [J]. ACS Chem Neurosci, 2015, 6(8): 1468-1475.
48
Nicholson C, Tao L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging [J]. Biophys J, 1993, 65(6): 2277-2290.
49
Stroh M, Zipfel WR, Williams RM, et al. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion [J]. Nat Mater, 2004, 3(7): 489-494.
50
Hrabe J, Hrabetova S. Time-resolved integrative optical imaging of diffusion during spreading depression [J]. Biophys J, 2019, 117(10): 1783-1794.
51
Zheng K, Jensen TP, Savtchenko LP, et al. Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging [J]. Sci Rep, 2017, 7(1): 42022.
52
Tao L, Nicholson C. Diffusion of albumins in rat cortical slices and relevance to volume transmission [J]. Neuroscience, 1996, 75(3): 839-847.
53
Sherpa AD, van de Nes P, Xiao F, et al. Gliotoxin-induced swelling of astrocytes hinders diffusion in brain extracellular space via formation of dead-space microdomains: astrocytic swelling hinders extracellular diffusion [J]. Glia, 2014, 62(7): 1053-1065.
54
Zhang H, Verkman AS. Microfiberoptic measurement of extracellular space volume in brain and tumor slices based on fluorescent dye partitioning [J]. Biophys J, 2010, 99(4): 1284-1291.
55
Tønnesen J, Inavalli VVGK, Nägerl UV. Super-resolution imaging of the extracellular space in living brain tissue [J]. Cell, 2018, 172(5): 1108-1121.e15.
56
Witte OW, Niermann H, Holthoff K. Cell swelling and ion redistribution assessed with intrinsic optical signals [J]. An Acad Bras Ciênc, 2001, 73(3): 337-350.
57
Godin AG, Varela JA, Gao Z, et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain [J]. Nat Nanotechnol, 2017, 12(3): 238-243.
58
Binder DK, Papadopoulos MC, Haggie PM, et al. In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching [J]. J Neurosci, 2004, 24(37): 8049-8056.
59
Papadopoulos MC, Kim JK, Verkman AS. Extracellular space diffusion in central nervous system: anisotropic diffusion measured by elliptical surface photobleaching [J]. Biophys J, 2005, 89(5): 3660-3668.
60
Zador Z, Magzoub M, Jin S, et al. Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain [J]. FASEB J, 2008, 22(3): 870-879.
61
Magzoub M, Zhang H, Dix JA, et al. Extracellular space volume measured by two-color pulsed dye infusion with microfiberoptic fluorescence photodetection [J]. Biophys J, 2009, 96(6): 2382-2390.
62
Canals S, Beyerlein M, Keller AL, et al. Magnetic resonance imaging of cortical connectivity in vivo [J]. Neuro Image, 2008, 40(2): 458-472.
63
Watanabe T, Radulovic J, Boretius S, et al. Mapping of the habenulo-interpeduncular pathway in living mice using manganese-enhanced 3D MRI [J]. Magn Reson Imaging, 2006, 24(3): 209-215.
64
Fitsanakis VA, Piccola G, Aschner JL, et al. Manganese transport by rat brain endothelial (RBE4) cell-based transwell model in the presence of astrocyte conditioned media [J]. J Neurosci Res, 2005, 81(2): 235-243.
65
Lu H, Demny S, Zuo Y, et al. Temporary disruption of the rat blood-brain barrier with a monoclonal antibody: a novel method for dynamic manganese-enhanced MRI [J]. Neuro Image, 2010, 50(1): 7-14.
66
Han H, Shi C, Fu Y, et al. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain (December 2013) [J]. IEEE J Biomed Health Inform, 2014, 18(3): 978-983.
67
Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits [J]. Radiology, 2001, 220(3): 640-646.
68
Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound [J]. Nat Commun, 2018, 9(1): 2336.
69
Wu B, Warnock G, Zaiss M, et al. An overview of CEST MRI for non-MR physicists [J]. EJNMMI Phys, 2016, 3(1): 19.
70
van Zijl PCM, Lam WW, Xu J, et al. Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field-dependent saturation spectrum [J]. Neuro Image, 2018, 168: 222-241.
71
Xu X, Chan KWY, Knutsson L, et al. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer [J]. Magn Reson Med, 2015, 74(6): 1556-1563.
72
Huang J, van Zijl PCM, Han X, et al. Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI [J]. Sci Adv, 2020, 6(20): eaba3884.
73
Kiviniemi V, Wang X, Korhonen V, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity-Glymphatic pulsation mechanisms? [J]. J Cereb Blood Flow Metab, 2016, 36(6): 1033-1045.
74
Bradley WG, Kortman KE, Burgoyne B. Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images [J]. Radiology, 1986, 159(3): 611-616.
75
Yamada S, Tsuchiya K, Bradley WG, et al. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse [J]. AJNR Am J Neuroradiol, 2015, 36(4): 623-630.
76
Kahlon B, Annertz M, Ståhlberg F, et al. Is aqueductal stroke volume, measured with cine phase-contrast magnetic resonance imaging scans useful in predicting outcome of shunt surgery in suspected normal pressure hydrocephalus? [J]. Neurosurgery, 2007, 60(1): 124-129.
77
Hayashi N, Matsumae M, Yatsushiro S, et al. Quantitative analysis of cerebrospinal fluid pressure gradients in healthy volunteers and patients with normal pressure hydrocephalus [J]. Neurol Med Chir (Tokyo), 2015, 55(8): 657-662.
78
Heidari Pahlavian S, Bunck AC, Thyagaraj S, et al. Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation [J]. Ann Biomed Eng, 2016, 44(11): 3202-3214.
79
Lundbaek JA, Hansen AJ. Brain interstitial volume fraction and tortuosity in anoxia. Evaluation of the ion-selective micro-electrode method [J]. Acta Physiol Scand, 1992, 146(4): 473-484.
80
Syková E, Svoboda J, Polák J, et al. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat [J]. J Cereb Blood Flow Metab, 1994, 14(2): 301-311.
81
Homola A, Zoremba N, Slais K, et al. Changes in diffusion parameters, energy-related metabolites and glutamate in the rat cortex after transient hypoxia/ischemia [J]. Neurosci Lett, 2006, 404(1-2): 137-142.
82
Dmytrenko L, Cicanic M, Anderova M, et al. The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions [J]. PLoS One, 2013, 8(7): e68044.
83
Hrabětová S, Hrabe J, Nicholson C. Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia [J]. J Neurosci, 2003, 23(23): 8351-8359.
84
Hrabětová S, Nicholson C. Dextran decreases extracellular tortuosity in thick-slice ischemia model [J]. J Cereb Blood Flow Metab, 2000, 20(9): 1306-1310.
85
Ghorbani S, Yong VW. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis [J]. Brain, 2021, 144(7): 1958-1973.
86
Wang M, Ding F, Deng S, et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts [J]. J Neurosci, 2017, 37(11): 2870-2877.
87
Gaberel T, Gakuba C, Goulay R, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? [J]. Stroke, 2014, 45(10): 3092-3096.
88
Alsbrook DL, Di Napoli M, Bhatia K, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke [J]. Curr Neurol Neurosci Rep, 2023, 23(8): 407-431.
89
Zhang Q, Chen Y, Li Y, et al. Neutrophil extracellular trap-mediated impairment of meningeal lymphatic drainage exacerbates secondary hydrocephalus after intraventricular hemorrhage [J]. Theranostics, 2024, 14(5): 1909-1938.
90
Van Harreveld A, Crowell J, Malhotra SK. A study of extracellular space in central nervous tissue by freeze-substitution [J]. J Cell Biol, 1965, 25(1): 117-137.
91
Huang X, Li K, Liu Y, et al. Quantitative measurement of brain extracellular space with three-dimensional electron microscopy imaging [J]. Sens Imaging, 2023, 24(1): 2.
92
Jin BJ, Smith AJ, Verkman AS. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism [J]. J Gen Physiol, 2016, 148(6): 489-501.
93
Holter KE, Kehlet B, Devor A, et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow [J]. Proc Natl Acad Sci, 2017, 114(37): 9894-9899.
94
Ohno N, Terada N, Saitoh S, et al. Recent development of in vivo cryotechnique to cryobiopsy for living animals [J]. Histol Histopathol, 2007, 22(11): 1281-1290.
95
Korogod N, Petersen CC, Knott GW. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation [J]. ELife, 2015, 4: e05793.
96
Soria FN, Paviolo C, Doudnikoff E, et al. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling [J]. Nat Commun, 2020, 11(1): 3440.
97
Song J, Chen R, Yang L, et al. Electrical impedance changes at different phases of cerebral edema in rats with ischemic brain injury [J]. BioMed Res Int, 2018, 2018: 9765174.
98
Hansen AJ, Olsen CE. Brain extracellular space during spreading depression and ischemia [J]. Acta Physiol Scand, 1980, 108(4): 355-365.
99
Djajaputra D. Electrical impedance tomography: methods, history and applications [J]. Med Phys, 2005, 32(8): 5712.
100
Li J, Kikuchi D, Sapkota A, et al. Quantitative evaluation of electrical parameters influenced by blood flow rate with multiple-frequency measurement based on modified Hanai mixture formula [J]. Sens Actuators B Chem, 2018, 268: 7-14.
101
Rigaud B, Morucci JP. Bioelectrical impedance techniques in medicine part Ⅲ: impedance imaging third section: medical applications [J]. Crit Rev Biomed Eng, 1996, 24(4-6): 655-677.
102
Schuessler TF, Bates JHT. Current patterns and electrode types for single-source electrical impedance tomography of the thorax [J]. Ann Biomed Eng, 1998, 26(2): 253-259.
103
Gilad O, Holder DS. Impedance changes recorded with scalp electrodes during visual evoked responses: implications for electrical impedance tomography of fast neural activity [J]. Neuroimage, 2009, 47(2): 514-522.
104
Olsson T, Broberg M, Pope KJ, et al. Cell swelling, seizures and spreading depression: an impedance study [J]. Neuroscience, 2006, 140(2): 505-515.
105
Tidswell AT, Gibson A, Bayford RH, et al. Electrical impedance tomography of human brain activity with a two-dimensional ring of scalp electrodes [J]. Physiol Meas, 2001, 22(1): 167-175.
106
Seo JK, Lee J, Kim SW, et al. Frequency-difference electrical impedance tomography (fdEIT): algorithm development and feasibility study [J]. Physiol Meas, 2008, 29(8): 929-944.
107
Fu F, Bing L, Meng D, et al. Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment [J]. PLoS One, 2014, 9(12): e113202.
108
Li H, Chen R, Xu C, et al. Unveiling the development of intracranial injury using dynamic brain EIT: an evaluation of current reconstruction algorithms [J]. Physiol Meas, 2017, 38(9): 1776-1790.
109
Tidswell T, Gibson A, Bayford RH, et al. Three-dimensional electrical impedance tomography of human brain activity [J]. NeuroImage, 2001, 13(2): 283-294.
110
Abascal J, Arridge SR, Atkinson D, et al. Use of anisotropic modelling in electrical impedance tomography; description of method and preliminary assessment of utility in imaging brain function in the adult human head [J]. Neuroimage, 2008, 43(2): 258-268.
111
Bagshaw AP, Liston AD, Bayford RH, et al. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method [J]. Neuroimage, 2003, 20(2): 752-764.
112
Nissinen A, Kaipio JP, Vauhkonen M, et al. Contrast enhancement in EIT imaging of the brain [J]. Physiol Meas, 2016, 37(1): 1-24.
113
Suksawang S, Niamsri K, Ouypornkochagorn T. Scalp voltage response to conductivity changes in the brain in the application of electrical impedance tomography (EIT) [C]// 2018 15th Int Conf Electr Eng Comput Telecommun Inf Technol ECTI-CON, 2018.
114
Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain [J]. Proc Natl Acad Sci, 1994, 91(6): 2076-2080.
115
Han H, Xia Z, Chen H, et al. Simple diffusion delivery via brain interstitial route for the treatment of cerebral ischemia [J]. Sci China Life Sci, 2011, 54(3): 235-239.
116
Zhao G, Chen H, Yan J, et al. Efficacy of citicoline delivered via brain extracellular space against experimental acute ischemic stroke in rats [J]. Int J Med Sci, 2024, 21(7): 1274-1279.
[1] 李翠乔, 刘欣, 孟红霞. 老年心脑血管病患者院内感染分析及预防策略[J/OL]. 中华实验和临床感染病杂志(电子版), 2017, 11(02): 181-184.
[2] 黄辉健, 陈毅来, 罗芳, 钱建荣, 李中兴. 腹部手术对老年心脑血管病患者的影响[J/OL]. 中华普通外科学文献(电子版), 2015, 09(01): 26-28.
[3] 中国医师协会神经外科医师分会神经电生理监测学组, 中国研究型医院学会临床神经电生理专业委员会. 颅内外血管搭桥术中神经电生理监测中国专家共识(2024版)[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 65-72.
[4] 李俊, 马廉亭. 多模态三维影像融合技术体系的建立及在脑血管病诊疗中的应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 129-134.
[5] 康德智. 出血性脑血管病诊疗新进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2019, 09(02): 65-68.
[6] 刘镇楠, 李文政, 王东, 岳树源. 3D打印在神经外科应用的新进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2018, 08(01): 52-55.
[7] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
[8] 马联胜, 赵佳佳, 牛小媛. 重症脑血管病患者卒中相关性肺炎的危险因素及预后分析[J/OL]. 中华临床医师杂志(电子版), 2017, 11(20): 2307-2310.
[9] 米玛顿珠, 张瑞, 王凡, 王斌, 季士勇, 罗源, 荣策, 格桑罗布, 王丽平. 基于心脑血管病筛查的极高海拔地区眼底特征谱的初步研究[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 564-572.
[10] 洪雪, 裴月红, 傅瑜. 脑血管病临床研究参与者知情同意的现状及建议[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(06): 545-548.
[11] 沈洁, 赵弘轶, 黄勇华. 光生物调节技术在脑卒中治疗中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(06): 613-616.
[12] 宋彬彬, 宁金丽, 李丽, 段智慧, 马聪敏. 卒中中心建设中脑颈血管超声的若干问题[J/OL]. 中华脑血管病杂志(电子版), 2022, 16(02): 76-79.
[13] 叶瑾怡, 江凌玲, 陈玮琪, 王伊龙. 外泌体在脑血管病诊治中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2021, 15(04): 253-257.
[14] 韩芸峰, 来璇, 杨军, 马长城. 代谢综合征与血管性认知障碍关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2020, 14(04): 234-237.
[15] 吴华, 禚小琪, 曾辉. 高强度间歇训练对控制肥胖人群体质量和血压的影响[J/OL]. 中华脑血管病杂志(电子版), 2020, 14(03): 125-128.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?