1 |
Fernández-Moncada I, Lavanco G, Fundazuri UB, et al. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice [J]. Nat Commun, 2024, 15(1): 6842.
|
2 |
Zhang Y, Tong L, Ma L, et al. Progress in the research of lactate metabolism disruption and astrocyte-neuron lactate shuttle impairment in schizophrenia: a comprehensive review [J]. Adv Biol (Weinh), 2024, 8(6): e2300409.
|
3 |
Salmina AB, Kuvacheva NV, Morgun AV, et al. Glycolysis-mediated control of blood-brain barrier development and function [J]. Int J Biochem Cell Biol, 2015, 64: 174-184.
|
4 |
Xu K, Zhang K, Wang Y, et al. Comprehensive review of histone lactylation: structure, function, and therapeutic targets [J]. Biochem Pharmacol, 2024, 225: 116331.
|
5 |
Zanza C, Facelli V, Romenskaya T, et al. Lactic acidosis related to pharmacotherapy and human diseases [J]. Pharmaceuticals (Basel), 2022, 15(12): 1496.
|
6 |
Remund B, Yilmaz B, Sokollik C. D-lactate: implications for gastrointestinal diseases [J]. Children (Basel), 2023, 10(6): 945.
|
7 |
Yiew N, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism [J]. Am J Physiol Endocrinol Metab, 2022, 323(1): E33-E52.
|
8 |
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease [J]. Cell Mol Life Sci, 2014, 71(14): 2577-2604.
|
9 |
Margineanu MB, Mahmood H, Fiumelli H, et al. L-lactate regulates the expression of synaptic plasticity and neuroprotection genes in cortical neurons: a transcriptome analysis [J]. Front Mol Neurosci, 2018, 11: 375.
|
10 |
Pu J, Han J, Yang J, et al. Anaerobic glycolysis and ischemic stroke: from mechanisms and signaling pathways to natural product therapy [J]. ACS Chem Neurosci, 2024, 15(17): 3090-3105.
|
11 |
Brouns R, Sheorajpanday R, Wauters A, et al. Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA [J]. Clin Chim Acta, 2008, 397(1-2): 27-31.
|
12 |
Liu C, Huai R, Xiang Y, et al. High cerebrospinal fluid lactate concentration at 48 h of hospital admission predicts poor outcomes in patients with tuberculous meningitis: a multicenter retrospective cohort study [J]. Front Neurol, 2022, 13: 989832.
|
13 |
Kulik U, Moesta C, Spanel R, et al. Dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of primary nonfunction of fatty liver allografts [J]. Transl Res, 2024, 264: 33-65.
|
14 |
Zhang L, Xin C, Wang S, et al. Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle [J]. Sci Adv, 2024, 10(26): eadn4508.
|
15 |
Roosterman D, Cottrell GS. Astrocytes and neurons communicate via a monocarboxylic acid shuttle [J]. AIMS Neurosci, 2020, 7(2): 94-106.
|
16 |
Bak LK, Schousboe A. Misconceptions regarding basic thermodynamics and enzyme kinetics have led to erroneous conclusions regarding the metabolic importance of lactate dehydrogenase isoenzyme expression [J]. J Neurosci Res, 2017, 95(11): 2098-2102.
|
17 |
Knudsen GM, Paulson OB, Hertz MM. Kinetic analysis of the human blood-brain barrier transport of lactate and its influence by hypercapnia [J]. J Cereb Blood Flow Metab, 1991, 11(4): 581-586.
|
18 |
Leen WG, Willemsen MA, Wevers RA, et al. Cerebrospinal fluid glucose and lactate: age-specific reference values and implications for clinical practice [J]. PLoS One, 2012, 7(8): e42745.
|
19 |
Sakuma T, Mukai Y, Yamaguchi A, et al. Monocarboxylate transporters 1 and 2 are responsible for L-lactate uptake in differentiated human neuroblastoma SH-SY5Y cells [J]. Biol Pharm Bull, 2024, 47(4): 764-770.
|
20 |
Iwanaga T, Kishimoto A. Cellular distributions of monocarboxylate transporters: a review [J]. Biomed Res, 2015, 36(5): 279-301.
|
21 |
Sheng G, Gao Y, Wu H, et al. Functional heterogeneity of MCT1 and MCT4 in metabolic reprogramming affects osteosarcoma growth and metastasis [J]. J Orthop Surg Res, 2023, 18(1): 131.
|
22 |
Shi C, Xu J, Ding Y, et al. MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury [J]. Theranostics, 2024, 14(14): 5662-5681.
|
23 |
Peng Z, Li XJ, Pang C, et al. Hydrogen inhalation therapy regulates lactic acid metabolism following subarachnoid hemorrhage through the HIF-1α pathway [J]. Biochem Biophys Res Commun, 2023, 663: 192-201.
|
24 |
Verkhratsky A, Untiet V, Rose CR. Ionic signalling in astroglia beyond calcium [J]. J Physiol, 2020, 598(9): 1655-1670.
|
25 |
Dembitskaya Y, Piette C, Perez S, et al. Lactate supply overtakes glucose when neural computational and cognitive loads scale up [J]. Proc Natl Acad Sci U S A, 2022, 119(47): e2212004119.
|
26 |
Amaral AI, Teixeira AP, Håkonsen BI, et al. A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and C-labeled glucose [J]. Front Neuroenergetics, 2011, 3: 5.
|
27 |
Xiong XY, Pan XR, Luo XX, et al. Astrocyte-derived lactate aggravates brain injury of ischemic stroke in mice by promoting the formation of protein lactylation [J]. Theranostics, 2024, 14(11): 4297-4317.
|
28 |
Zhang W, Xu L, Yu Z, et al. Inhibition of the glycolysis prevents the cerebral infarction progression through decreasing the lactylation levels of LCP1 [J]. Mol Biotechnol, 2023, 65(8): 1336-1345.
|
29 |
Xu J, Ji T, Li G, et al. Lactate attenuates astrocytic inflammation by inhibiting ubiquitination and degradation of NDRG2 under oxygen-glucose deprivation conditions [J]. J Neuroinflammation, 2022, 19(1): 314.
|
30 |
Zhang D, Gao J, Zhu Z, et al. Lysine L-lactylation is the dominant lactylation isomer induced by glycolysis [J]. Nat Chem Biol, 2025, 21(1): 91-99.
|
31 |
Hirayama Y, Anzai N, Kinouchi H, et al. P2X7 receptors in astrocytes: a switch for ischemic tolerance [J]. Molecules, 2022, 27(12): 3655.
|
32 |
Zhang M, Wang Y, Bai Y, et al. Monocarboxylate transporter 1 may benefit cerebral ischemia via facilitating lactate transport from glial cells to neurons [J]. Front Neurol, 2022, 13: 781063.
|
33 |
Yu X, Zhang R, Wei C, et al. MCT2 overexpression promotes recovery of cognitive function by increasing mitochondrial biogenesis in a rat model of stroke [J]. Anim Cells Syst (Seoul), 2021, 25(2): 93-101.
|
34 |
Monsorno K, Buckinx A, Paolicelli RC. Microglial metabolic flexibility: emerging roles for lactate [J]. Trends Endocrinol Metab, 2022, 33(3): 186-195.
|
35 |
Lauro C, Limatola C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response [J]. Front Immunol, 2020, 11: 493.
|
36 |
Hu J, Cai M, Liu Y, et al. The roles of GRP81 as a metabolic sensor and inflammatory mediator [J]. J Cell Physiol, 2020, 235(12): 8938-8950.
|
37 |
Li L, Lai X, Ni Y, et al. The role of GPR81-cAMP-PKA pathway in endurance training-induced intramuscular triglyceride accumulation and mitochondrial content changes in rats [J]. J Physiol Sci, 2024, 74(1): 8.
|
38 |
Shang Q, Bian X, Zhu L, et al. Lactate mediates high-intensity interval training-induced promotion of hippocampal mitochondrial function through the GPR81-ERK1/2 pathway [J]. Antioxidants (Basel), 2023, 12(12): 2087.
|
39 |
Smith JS, Pack TF. Noncanonical interactions of G proteins and β-arrestins: from competitors to companions [J]. FEBS J, 2021, 288(8): 2550-2561.
|
40 |
Xiang Y, Wei X, Du P, et al. β-Arrestin-2-ERK1/2 cPLA2α axis mediates TLR4 signaling to influence eicosanoid induction in ischemic brain [J]. FASEB J, 2019, 33(5): 6584-6595.
|
41 |
Shen Z, Jiang L, Yuan Y, et al. Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury [J]. CNS Neurosci Ther, 2015, 21(3): 271-279.
|
42 |
Schurr A, Gozal E. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress [J]. Front Pharmacol, 2011, 2: 96.
|
43 |
Morland C, Lauritzen KH, Puchades M, et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain [J]. J Neurosci Res, 2015, 93(7): 1045-1055.
|
44 |
Nonaka M, Kanouchi H, Torii S, et al. Lactic acid induces HSPA1A expression through ERK1/2 activation [J]. Biosci Biotechnol Biochem, 2023, 87(2): 191-196.
|
45 |
Jourdain P, Rothenfusser K, Ben-Adiba C, et al. Dual action of L-lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection [J]. Sci Rep, 2018, 8(1): 13472.
|
46 |
Briquet M, Rocher AB, Alessandri M, et al. Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue [J]. J Cereb Blood Flow Metab, 2022, 42(9): 1650-1665.
|
47 |
Wu J, Lu L, Dai B, et al. Unraveling the role of LDHA and VEGFA in oxidative stress: a pathway to therapeutic interventions in cerebral aneurysms [J]. Biomol Biomed, 2025, 25(2): 360-374.
|
48 |
Yang X, Chen YH, Liu L, et al. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models [J]. Pharmacol Res, 2024, 208: 107357.
|
49 |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation [J]. Nature, 2019, 574(7779): 575-580.
|
50 |
He C, Zhang J, Bai X, et al. Lysine lactylation-based insight to understanding the characterization of cervical cancer [J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(7): 167356.
|
51 |
Zhou J, Zhang L, Peng J, et al. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation [J]. Cell Metab, 2024, 36(9): 2054-2068.e14.
|
52 |
Berthet C, Lei H, Thevenet J, et al. Neuroprotective role of lactate after cerebral ischemia [J]. J Cereb Blood Flow Metab, 2009, 29(11): 1780-1789.
|
53 |
Cai M, Wang H, Song H, et al. Lactate is answerable for brain function and treating brain diseases: energy substrates and signal molecule [J]. Front Nutr, 2022, 9: 800901.
|
54 |
Castillo X, Rosafio K, Wyss MT, et al. A probable dual mode of action for both L- and D-lactate neuroprotection in cerebral ischemia [J]. J Cereb Blood Flow Metab, 2015, 35(10): 1561-1569.
|