切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 200 -204. doi: 10.11817/j.issn.1673-9248.2021.04.001

专家论坛

脑类淋巴系统在脑小血管病中的研究进展
田雨1, 王伊龙1,()   
  1. 1. 100070 首都医科大学附属北京天坛医院神经病学中心 国家神经系统疾病临床医学研究中心 首都医科大学人脑保护高精尖创新中心 脑血管病转化医学北京市重点实验室
  • 收稿日期:2021-05-27 出版日期:2021-08-09
  • 通信作者: 王伊龙
  • 基金资助:
    科技部国家重点研发计划(2017YFC1307900,2017YFC1307905); 国家自然科学基金委员会杰出青年科学基金项目(81825007); 北京高校卓越青年科学家计划项目(BJJWZYJH01201910025030); 北京市科学技术委员会(D17110700300000,D171100003017001); 青年北京学者(010); 北京市百千万人才工程培养经费资助-A创新研发类(2018A12); 第三批国家“万人计划”科技创新领军人才

The role of glymphatic system in cerebral small vessel disease

Yu Tian1, Yilong Wang1,()   

  • Received:2021-05-27 Published:2021-08-09
  • Corresponding author: Yilong Wang
引用本文:

田雨, 王伊龙. 脑类淋巴系统在脑小血管病中的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(04): 200-204.

Yu Tian, Yilong Wang. The role of glymphatic system in cerebral small vessel disease[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(04): 200-204.

脑类淋巴系统由动脉旁间隙的流入通路、脑实质内脑脊液和组织液的交换通路和静脉旁间隙流出通路组成,是引流脑脊液和清除代谢物质的重要途径。目前,已发现类淋巴系统功能紊乱与多种神经退行性疾病相关,然而鲜有关于脑小血管病领域的相关探索。本文首先就血管周围间隙这一解剖结构进行介绍,详细地分析了脑类淋巴系统与脑小血管病各发病机制之间的联系,最终探讨了脑类淋巴系统在脑小血管的临床症状尤其是痴呆中起的作用。可见,重视脑类淋巴系统在脑小血管病中的作用,以全新的视角理解脑小血管病和脑类淋巴系统的相互关系,具有较大的科学和临床意义。

The glymphatic system is an important pathway which promotes movement of cerebrospinal fluid (CSF) into the brain and clearance of metabolic waste of the brain. It consists of CSF influx along periarterial space, CSF-interstitial fluid (ISF) exchange and CSF exflux along perivenous space. The impairment of glymphatic function has been found to be associated with a variety of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. However, few researches focus on the role of the glymphatic system in cerebral small vessel disease (CSVD). In this review, the perivascular space is introduced firstly, and the relationship between the glymphatic system and the pathogenesis of CSVD is analyzed in detail. Finally, the role of the glymphatic system in the clinical symptoms of CSVD, especially in dementia is discussed. Above all, it is of great scientific and clinical significance to pay attention to the role of glymphatic system in CSVD.

1
陆正齐, 李铁梅. 增龄相关性脑小血管病治疗新进展 [J]. 中国卒中杂志, 2020, 15(4): 371-375.
2
陶雯, 柯开富. 脑小血管病研究进展 [J]. 中国卒中杂志, 2017, 12(2): 147-151.
3
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta [J]. Sci Transl Med, 2012, 4(147): 147ra111.
4
Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future [J]. Annu Rev Pathol, 2018, 13(1): 379-394.
5
龚灵毓, 徐群. 血管周围间隙在脑小血管病中的研究进展 [J]. 中国卒中杂志, 2020, 15(12): 1287-1291.
6
范玉华. 衰老及糖尿病相关认知功能障碍——类淋巴系统到底扮演怎样的角色? [J]. 中国卒中杂志, 2020, 15(1): 96-97.
7
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.
8
Behrens L, Rohde S. Comment on: treatment of brain arteriovenous malformations by double arterial catheterization with simultaneous injection of Onyx: retrospective series of 17 patients: Abud DG, RivaR, NakiriGS, PadovaniF, KhawaldehM, MounayerC. AJNR Am J Neuroradiol. 2011; 32: 152-158 [J]. Clin Neuroradiol, 2011, 21(2): 107-109.
9
Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging [J]. Lancet Neurol, 2013, 12(5): 483-497.
10
Passiak BS, Liu D, Kresge HA, et al. Perivascular spaces contribute to cognition beyond other small vessel disease markers [J]. Neurology, 2019, 92(12): e1309-e1321.
11
Schain AJ, Melo-Carrillo A, Strassman AM, et al. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache [J]. J Neurosci, 2017, 37(11): 2904-2915.
12
Wardlaw JM, Benveniste H, Nedergaard M, et al. Perivascular spaces in the brain: anatomy, physiology and pathology [J]. Nat Rev Neurol, 2020, 16(3): 137-153.
13
Brown R, Benveniste H, Black SE, et al. Understanding the role of the perivascular space in cerebral small vessel disease [J]. Cardiovasc Res, 2018, 114(11): 1462-1473.
14
Cannistraro RJ, Badi M, Eidelman BH, et al. CNS small vessel disease: a clinical review [J]. Neurology, 2019, 92(24): 1146-1156.
15
Moran C, Phan TG, Srikanth VK. Cerebral small vessel disease: a review of clinical, radiological, and histopathological phenotypes [J]. Int J Stroke, 2012, 7(1): 36-46.
16
Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain [J]. Ann Neurol, 2014, 76(6): 845-861.
17
Ma Q, Ineichen BV, Detmar M, et al. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice [J]. Nat Commun, 2017, 8(1): 1434.
18
Zhou Y, Cai J, Zhang W, et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human [J]. Ann Neurol, 2020, 87(3): 357-369.
19
Xu Z, Xiao N, Chen Y, et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits [J]. Mol Neurodegener, 2015, 10(1): 58.
20
Zeppenfeld DM, Simon M, Haswell JD, et al. Association of perivascular localization of aquaporin-4 with cognition and alzheimer disease in aging brains [J]. JAMA Neurol, 2017, 74(1): 91-99.
21
Pantoni LM. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges [J]. Lancet Neurol, 2010, 9(7): 689-701.
22
Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain [J]. J Neurosci, 2013, 33(46): 18190-18199.
23
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications [J]. Lancet Neurol, 2019, 18(7): 684-696.
24
Verheggen ICM, Van Boxtel MPJ, Verhey FRJ, et al. Interaction between blood-brain barrier and glymphatic system in solute clearance [J]. Neurosci Biobehav Rev, 2018, 90: 26-33.
25
Mcconnell HL, Kersch CN, Woltjer RL, et al. The Translational Significance of the Neurovascular Unit [J]. J Biol Chem, 2017, 292(3): 762-770.
26
Sabayan B, Westendorp RGJ. Neurovascular-glymphatic dysfunction and white matter lesions [J]. GeroScience, 2021. Online ahead of print.
27
Low A, Mak E, Rowe JB, et al. Inflammation and cerebral small vessel disease: a systematic review [J]. Ageing Res Rev, 2019, 53: 100916.
28
Chen J, Wang L, Xu H, et al. The lymphatic drainage system of the CNS plays a role in lymphatic drainage, immunity, and neuroinflammation in stroke [J]. J Leukoc Biol, 2021. Online ahead of print.
29
Mortensen KN, Sanggaard S, Mestre H, et al. Impaired glymphatic transport in spontaneously hypertensive rats [J]. J Neurosci, 2019, 39(32): 6365-6377.
30
Xue Y, Liu N, Zhang M, et al. Concomitant enlargement of perivascular spaces and decrease in glymphatic transport in an animal model of cerebral small vessel disease [J]. Brain Res Bull, 2020, 161: 78-83.
31
Jiang Q, Zhang L, Ding G, et al. Impairment of the glymphatic system after diabetes [J]. J Cereb Blood Flow Metab, 2017, 37(4): 1326-1337.
32
Yang G, Deng N, Liu Y, et al. Evaluation of glymphatic system using diffusion MR Technique in T2DM cases [J]. Front Hum Neurosci, 2020, 14: 300.
33
Attems J, Yamaguchi H, Saido TC, et al. Capillary CAA and perivascular Abeta-deposition: two distinct features of Alzheimer's disease pathology [J]. J Neurol Sci, 2010, 299(1-2): 155-162.
34
于永鹏, 谭兰. 脑微出血发病机制、流行病学、影像学表现及其临床意义 [J]. 中国卒中杂志, 2017, 12(8): 759-764.
35
Kim SH, Ahn JH, Yang H, et al. Cerebral amyloid angiopathy aggravates perivascular clearance impairment in an Alzheimer's disease mouse model [J]. Acta Neuropathol Commun, 2020, 8(1): 181.
36
van Veluw SJ, Shih AY, Smith EE, et al. Detection, risk factors, and functional consequences of cerebral microinfarcts [J]. Lancet Neurol, 2017, 16(9): 730-740.
37
蔚洪恩, 于欣. 脑微梗死的研究进展 [J]. 中国卒中杂志, 2018, 13(4): 409-414.
38
Wang M, Ding F, Deng S, et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts [J]. J Neurosci, 2017, 37(11): 2870-2877.
39
Wardlaw JM, Debette S, Jokinen H, et al. ESO Guideline on covert cerebral small vessel disease [J]. Eur Stroke J, 2021: 902287657.
40
Xu Z, Xiao N, Chen Y, et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits [J]. Mol Neurodegener, 2015, 10(1): 58.
41
Harrison IF, Ismail O, Machhada A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model [J]. Brain, 2020, 143(8): 2576-2593.
42
Feng W, Zhang Y, Wang Z, et al. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer's disease mouse model with suppression of glymphatic clearance [J]. Alzheimers Res Ther, 2020, 12(1): 125.
43
Wu CH, Lirng JF, Ling YH, et al. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood–brain barrier leakage [J]. Ann Neurol, 2021, 89(1): 111-124.
44
Semyachkina-Glushkovskaya O, Postnov D, Penzel T, et al. Sleep as a novel biomarker and a promising therapeutic target for cerebral small vessel disease: a review focusing on Alzheimer's disease and the blood-brain barrier [J]. Int J Mol Sci, 2020, 21(17): 6293.
45
Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain [J]. Science, 2013, 342(6156): 373-377.
[1] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[2] 王洋洋, 徐如祥. 四面体框架核酸在颅脑损伤和阿尔兹海默病认知功能障碍中的治疗作用[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 321-323.
[3] 郭翃江, 符雪彩, 朱妍妍, 严之红, 王丽娜, 纪红. 基于影响因素的老年阿尔茨海默病认知功能障碍预测模型构建及电子化认知康复训练的应用价值[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 156-161.
[4] 李文虎, 付帅, 武玉亮, 王磊, 孔凡强, 陈卫光, 边玉松, 陈永安, 丛大伟. 动脉瘤性蛛网膜下腔出血后认知功能障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 115-119.
[5] 常文轩, 王婷, 刘伟, 蓝天琦, 彭静, 汪诗瑶, 张晓鹏, 冯晨, 宫雪梅, 朱敏. 脑小血管病所致执行障碍的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 179-182.
[6] 丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣. 脑小血管病影像学标志物与运动障碍研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 429-434.
[7] 白明悦, 杨淑娜, 胡红梅, 胡文立. 透析患者脑小血管病患病情况的研究现状及其机制探讨[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 505-509.
[8] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[9] 晏美娟, 邵礼晖. 高水平脂蛋白(a)与无“三高”老年人群小动脉硬化型脑小血管病的相关性研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 458-463.
[10] 刘琳, 张奇山, 廖蔓倩, 陈余榕, 李倍, 何玉成, 唐圣桃. HTRA1相关常染色体显性脑小血管病家系报告并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 379-385.
[11] 王道合, 施媛媛. 8-iso-PGF2α及P选择素在评估脑小血管病患者认知功能中的价值[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 364-368.
[12] 胡红梅, 胡文立. 脑小血管病总负担评估量表的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 145-149.
[13] 李卓然, 胡文立. 内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 57-60.
[14] 张兴文, 侯磊, 冉晔, 田成林. 急性多发性缺血性脑小血管病10例临床分析[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 22-25.
[15] 刘欣, 王丽娟, 刘荧, 王爽, 徐绍红, 李小刚. 缺血性脑卒中后不同程度认知障碍危险因素及认知训练效果分析[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 314-319.
阅读次数
全文


摘要