切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 621 -629. doi: 10.11817/j.issn.1673-9248.2024.06.016

综述

血管内皮细胞来源胞外囊泡在缺血性脑卒中作用的研究进展
金小娟1, 马晓瑭2,()   
  1. 1.524023 广东湛江,广东医科大学
    2.524001 广东湛江,广东医科大学附属医院神经病学研究所 广东省衰老相关心脑疾病重点实验室
  • 收稿日期:2024-03-12 出版日期:2024-12-01
  • 通信作者: 马晓瑭
  • 基金资助:
    国家自然科学基金项目(82170407)广东省基础与应用基础研究基金项目(2020A1515010089,2021A1515010982)

Research progress on vascular endothelial cell-derived extracellular vesicles in ischemic stroke

Xiaojuan Jin1, Xiaotang Ma2,()   

  1. 1.Guangdong Medical University, Zhanjiang 524023, China
    2.Institute of Neurology, the Affiliated Hospital of Guangdong Medical University, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524001, China
  • Received:2024-03-12 Published:2024-12-01
  • Corresponding author: Xiaotang Ma
引用本文:

金小娟, 马晓瑭. 血管内皮细胞来源胞外囊泡在缺血性脑卒中作用的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 621-629.

Xiaojuan Jin, Xiaotang Ma. Research progress on vascular endothelial cell-derived extracellular vesicles in ischemic stroke[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(06): 621-629.

缺血性脑卒中(IS)致死致残率高,目前缺乏有效的诊疗方法。脑血管内皮细胞功能紊乱引起脑组织缺血缺氧,并通过细胞间通信作用调控血脑屏障(BBB)以及神经血管单元(NVU)细胞功能,是IS 发生和发展的重要病理基础。越来越多的证据表明,内皮细胞来源胞外囊泡(EC-EV)通过传递携带的内容物介导NVU 细胞间的通信连接,影响NVU 细胞和BBB 功能,在维持神经血管稳态和功能中发挥重要作用。本文综述了EC-EV 在IS 发生发展病理机制以及诊疗中的作用,并探讨了EC-EV 作为IS 诊断生物学标志物和治疗靶点的潜能,以期为IS 的临床诊断与治疗提供新的思路。

Ischemic stroke (IS) is associated with a high rate of death and disability, and there is a lack of effective diagnosis and therapeutic methods.Dysfunction of cerebral vascular endothelial cells (ECs)causes ischemia and hypoxia in brain tissue, and ECs regulate the function of blood-brain barrier (BBB) and neurovascular unit (NVU) cells through cell-to-cell communication, which is an important pathological basis for the occurrence and development of IS.A growing body of evidence suggests that endothelial cell-derived extracellular vesicles (EC-EVs) are instrumental in maintaining neurovascular homeostasis and function.They facilitate communication between NVU cells and influence the function of NVU cells and BBB through the delivery of their cargo.This article reviews the role of EC-EVs in the pathogenesis, diagnosis, and treatment of IS.The potential of EC-EVs as diagnostic biomarkers and therapeutic targets for IS is also discussed, in order to provide new ideas for the clinical diagnosis and treatment strategies of IS.

图1 内皮细胞衍生的胞外囊泡(EC-EV)在缺血性脑卒中的作用机制图。图的左侧为血管内皮细胞分泌胞外囊泡(EV)的示意图,在其右侧为EX-EV 的分子示意图,EC-EV 内包含着许多核酸、蛋白质和脂质等生物活性物质。图的右半部分为EC-EV 内的生物活性物质通过调控某些特定蛋白或信号通路,影响神经血管单元细胞的功能,从而对缺血性脑卒中发挥作用
1
Global Burden of Disease Study 2013 Collaborators.Global, regional,and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 [J].Lancet, 2015, 386(9995): 743-800.
2
Campbell BCV, Khatri PJTL.Stroke [J].Lancet, 2020, 396(10244):129-142.
3
Li JY, Li QQ, Sheng R.The role and therapeutic potential of exosomes in ischemic stroke [J].Neurochem Int, 2021, 151: 105194.
4
Chen YW, Lee HV, Abd Hamid SB.Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: Response surface methodology [J].Carbohydr Polym, 2017, 178: 57-68.
5
Hankey GJ.Stroke [J].Lancet, 2017, 389(10069): 641-654.
6
Shi Y, Wang R, Wang L, et al.Exosomes as biomarkers and therapeutic measures for ischemic stroke [J].Eur J Pharmacol, 2023, 939: 175477.
7
Li C, Wang C, Zhang Y, et al.Cerebral endothelial cell-derived small extracellular vesicles enhance neurovascular function and neurological recovery in rat acute ischemic stroke models of mechanical thrombectomy and embolic stroke treatment with tPA [J].J Cereb Blood Flow Metab, 2021, 41(8): 2090-2104.
8
Jung KH, Chu K, Lee ST, et al.Circulating endothelial microparticles as a marker of cerebrovascular disease [J].Ann Neurol, 2009, 66(2):191-199.
9
Hill AF.Extracellular vesicles and neurodegenerative diseases [J].J Neurosci, 2019, 39(47): 9269-9273.
10
Ruan J, Miao X, Schlüter D, et al.Extracellular vesicles in neuroinflammation: pathogenesis, diagnosis, and therapy [J].Mol Ther, 2021, 29(6): 1946-1957.
11
Yousif G, Qadri S, Haik M, et al.Circulating exosomes of neuronal origin as potential early biomarkers for development of stroke [J].Mol Diagn Ther, 2021, 25(2): 163-180.
12
Gao X, Gao H, Yue K, et al.Observing extracellular vesicles originating from endothelial cells in vivo demonstrates improved astrocyte function following ischemic stroke via aggregation-induced emission luminogens [J].ACS Nano, 2023, 17(16): 16174-16191
13
Ma X, Liao X, Liu J, et al.Circulating endothelial microvesicles and their carried miR-125a-5p: potential biomarkers for ischaemic stroke [J].Stroke Vasc Neurol, 2023, 8(2): 89-102.
14
蔡利, 陈湘闻, 徐胜波.细胞外囊泡在缺血性脑卒中中的研究进展 [J].卒中与神经疾病, 2021, 28(2): 214-217.
15
Raposo G, Stoorvogel W.Extracellular vesicles: exosomes,microvesicles, and friends [J].J Cell Biol, 2013, 200(4): 373-383.
16
Eitan E, Suire C, Zhang S, et al.Impact of lysosome status on extracellular vesicle content and release [J].Ageing Res Rev, 2016, 32: 65-74.
17
Pegtel DM, Gould SJ.Exosomes [J].Annu Rev Biochem, 2019, 88:487-514.
18
Simpson RJ, Lim JW, Moritz RL, et al.Exosomes: proteomic insights and diagnostic potential [J].Expert Rev Proteomics, 2009, 6(3): 267-283.
19
Sung BH, von Lersner A, Guerrero J, et al.A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells [J].Nat Commun, 2020, 11(1): 2092.
20
Savina A, Fader CM, Damiani MT, et al.Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner [J].Traffic, 2005, 6(2): 131-143.
21
Savina A, Vidal M, Colombo MI.The exosome pathway in K562 cells is regulated by Rab11 [J].J Cell Sci, 2002, 115(12): 2505-2515.
22
Ostrowski M, Carmo NB, Krumeich S, et al.Rab27a and Rab27b control different steps of the exosome secretion pathway [J].Nat Cell Biol, 2010, 12(1): 19-30.
23
Hsu C, Morohashi Y, Yoshimura S, et al.Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C [J].J Cell Biol, 2010, 189(2): 223-232.
24
Jeppesen DK, Fenix AM, Franklin JL, et al.Reassessment of exosome composition [J].Cell, 2019, 177(2): 428-445.e18.
25
Phuyal S, Hessvik NP, Skotland T, et al.Regulation of exosome release by glycosphingolipids and flotillins [J].FEBS J, 2014, 281(9):2214-2227.
26
Chanteloup G, Cordonnier M, Isambert N, et al.Monitoring HSP70 exosomes in cancer patients' follow up: a clinical prospective pilot study [J].J Extracell Vesicles, 2020, 9(1): 1766192.
27
Lauwers E, Wang YC, Gallardo R, et al.Hsp90 Mediates membrane deformation and exosome release [J].Mol Cell, 2018, 71(5): 689-702.
28
Peng KY, Pérez-González R, Alldred MJ, et al.Apolipoprotein E4 genotype compromises brain exosome production [J].Brain, 2019,142(1): 163-175.
29
Gerber PP, Cabrini M, Jancic C, et al.Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate [J].J Cell Biol, 2015, 209(3): 435-452.
30
Toh WS, Lai RC, Zhang B, et al.MSC exosome works through a protein-based mechanism of action [J].Biochem Soc Trans, 2018,46(4): 843-853.
31
Sun R, Liu Y, Lu M, et al.ALIX increases protein content and protective function of iPSC-derived exosomes [J].J Mol Med (Berl),2019, 97(6): 829-844.
32
Li JY, Li QQ, Sheng R.The role and therapeutic potential of exosomes in ischemic stroke [J].Neurochem Int, 2021, 151: 105194.
33
Nozohouri S, Vaidya B, Abbruscato TJ.Exosomes in ischemic stroke [J].Curr Pharm Des, 2020, 26(42): 5533-5545.
34
Xin H, Li Y, Cui Y, et al.Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats [J].J Cereb Blood Flow Metab, 2013, 33(11): 1711-1715.
35
Xin H, Li Y, Liu Z, et al.MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles [J].Stem Cells, 2013, 31(12): 2737-2746.
36
Doeppner TR, Herz J, Görgens A, et al.Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression [J].Stem Cells Transl Med, 2015, 4(10): 1131-1143.
37
Song Y, Li Z, He T, et al.M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124 [J].Theranostics, 2019, 9(10): 2910-2923.
38
Luo H, Huang Q, Huang D, et al.HABP2 Encapsulated by peripheral blood-derived exosomes suppresses astrocyte autophagy to exacerbate neuroinflammatory injury in mice with ischemic stroke [J].ACS Chem Neurosci, 2023, 14(12): 2347-2361.
39
Perbet R, Zufferey V, Leroux E, et al.Tau transfer via extracellular vesicles disturbs the astrocytic mitochondrial system [J].Cells, 2023,12(7): 985.
40
Tang B, Song M, Xie X, et al.Tumor necrosis factor-stimulated gene-6 (TSG-6) secreted by BMSCs regulates activated astrocytes by inhibiting NF-κB signaling pathway to ameliorate blood brain barrier damage after intracerebral hemorrhage [J].Neurochem Res, 2021,46(9): 2387-2402.
41
Li Q, Niu X, Yi Y, et al.Inducible pluripotent stem cell-derived small extracellular vesicles rejuvenate senescent blood-brain barrier to protect against ischemic stroke in aged mice [J].ACS Nano, 2023,17(1): 775-789.
42
Xia Y, Hu G, Chen Y, et al.Embryonic stem cell derived small extracellular vesicles modulate regulatory T cells to protect against ischemic stroke [J].ACS Nano, 2021, 15(4): 7370-7385.
43
Mahdavipour M, Hassanzadeh G, Seifali E, et al.Effects of neural stem cell-derived extracellular vesicles on neuronal protection and functional recovery in the rat model of middle cerebral artery occlusion [J].Cell Biochem Funct, 2020, 38(4): 373-383.
44
Geng W, Tang H, Luo S, et al.Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation [J].Am J Transl Res, 2019, 11(2): 780-792.
45
Liu Q, Tan Y, Qu T, et al.Therapeutic mechanism of human neural stem cell-derived extracellular vesicles against hypoxia-reperfusion injury in vitro [J].Life Sci, 2020, 254: 117772.
46
Zhou X, Deng X, Liu M, et al.Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy [J].J Control Release, 2023, 357: 1-19.
47
Nalamolu KR, Venkatesh I, Mohandass A, et al.Exosomes secreted by the cocultures of normal and oxygen-glucose-deprived stem cells improve post-stroke outcome [J].Neuromolecular Med, 2019, 21(4): 529-539.
48
Petty MA, Lo EH.Junctional complexes of the blood-brain barrier:permeability changes in neuroinflammation [J].Prog Neurobiol, 2002,68(5): 311-323.
49
Weiss N, Miller F, Cazaubon S, et al.The blood-brain barrier in brain homeostasis and neurological diseases [J].Biochim Biophys Acta,2009, 1788(4): 842-857.
50
Zhu H, Wang Z, Xing Y, et al.Baicalin reduces the permeability of the blood-brain barrier during hypoxia in vitro by increasing the expression of tight junction proteins in brain microvascular endothelial cells [J].J Ethnopharmacol, 2012, 141(2): 714-720.
51
Araldi E, Suárez Y.MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases [J].Biochim Biophys Acta,2016, 1861(12): 2094-2103.
52
庹明辉, 徐艳.内皮微粒与缺血性脑血管病的研究进展 [J].中华老年心脑血管病杂志, 2018, 20(4): 3.
53
Jiang X, Andjelkovic AV, Zhu L, et al.Blood-brain barrier dysfunction and recovery after ischemic stroke [J].Prog Neurobiol, 2018, 163-164:144-171.
54
Zlokovic BV.The blood-brain barrier in health and chronic neurodegenerative disorders [J].Neuron, 2008, 57(2): 178-201.
55
Keep RF, Xiang J, Ennis SR, et al.Blood-brain barrier function in intracerebral hemorrhage [J].Acta Neurochir Suppl, 2008, 105: 73-77.
56
Keaney J, Campbell M.The dynamic blood-brain barrier [J].FEBS J,2015, 282(21): 4067-4079.
57
Dharmasaroja PA.Fluid intake related to brain edema in acute middle cerebral artery infarction [J].Transl Stroke Res, 2016, 7(1): 49-53.
58
Rosenberg GA.Ischemic brain edema [J].Prog Cardiovasc Dis, 1999,42(3): 209-216.
59
Wolburg H, Lippoldt A.Tight junctions of the blood-brain barrier:development, composition and regulation [J].Vascul Pharmacol, 2002,38(6): 323-337.
60
Stamatovic SM, Johnson AM, Keep RF, et al.Junctional proteins of the blood-brain barrier: new insights into function and dysfunction [J].Tissue Barriers, 2016, 4(1): e1154641.
61
Antonetti DA, Barber AJ, Hollinger LA, et al.Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1.A potential mechanism for vascular permeability in diabetic retinopathy and tumors [J].J Biol Chem,1999, 274(33): 23463-23467.
62
Persidsky Y, Heilman D, Haorah J, et al.Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE) [J].Blood, 2006, 107(12): 4770-4780.
63
Soma T, Chiba H, Kato-Mori Y, et al.Thr(207) of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP [J].Exp Cell Res, 2004, 300(1): 202-212.
64
Yamamoto M, Ramirez SH, Sato S, et al.Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells [J].Am J Pathol,2008, 172(2): 521-533.
65
Rochfort KD, Cummins PM.The blood-brain barrier endothelium: a target for pro-inflammatory cytokines [J].Biochem Soc Trans, 2015,43(4): 702-706.
66
Stamatovic SM, Dimitrijevic OB, Keep RF, et al.Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability [J].J Biol Chem, 2006, 281(13): 8379-8388.
67
Pan Q, Kuang X, Cai S, et al.miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury [J].Stem Cell Res Ther, 2020, 11(1): 260.
68
Pan Q, He C, Liu H, et al.Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow [J].Mol Brain,2016, 9(1): 63.
69
Gelderblom M, Leypoldt F, Steinbach K, et al.Temporal and spatial dynamics of cerebral immune cell accumulation in stroke [J].Stroke,2009, 40(5): 1849-1857.
70
McColl BW, Rothwell NJ, Allan SM.Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice [J].J Neurosci, 2008, 28(38): 9451-9462.
71
Wang Q, Doerschuk CM.The signaling pathways induced by neutrophil-endothelial cell adhesion [J].Antioxid Redox Signal, 2002,4(1): 39-47.
72
Reuter B, Rodemer C, Grudzenski S, et al.Temporal profile of matrix metalloproteinases and their inhibitors in a human endothelial cell culture model of cerebral ischemia [J].Cerebrovasc Dis, 2013, 35(6): 514-520.
73
Yang G, Qian C, Wang N, et al.Tetramethylpyrazine protects against oxygen-glucose deprivation-induced brain microvascular endothelial cells injury via Rho/Rho-kinase signaling pathway [J].Cell Mol Neurobiol, 2017, 37(4): 619-633.
74
Zhang Y, Wang T, Yang K, et al.Cerebral microvascular endothelial cell apoptosis after ischemia: role of enolase-phosphatase 1 activation and aci-reductone dioxygenase 1 translocation [J].Front Mol Neurosci,2016, 9: 79.
75
Jiang X, Pu H, Hu X, et al.A post-stroke therapeutic regimen with omega-3 polyunsaturated fatty acids that promotes white matter integrity and beneficial microglial responses after cerebral ischemia [J].Transl Stroke Res, 2016, 7(6): 548-561.
76
Hu X, Leak RK, Shi Y, et al.Microglial and macrophage polarization—new prospects for brain repair [J].Nat Rev Neurol,2015, 11(1): 56-64.
77
Xiong XY, Liu L, Yang QW.Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke [J].Prog Neurobiol, 2016, 142: 23-44.
78
Gualerzi A, Picciolini S, Rodà F, et al.Extracellular vesicles in regeneration and rehabilitation recovery after stroke [J].Biology (Basel),2021, 10(9): 843.
79
Bonaventura A, Liberale L, Vecchié A, et al.Update on inflammatory biomarkers and treatments in ischemic stroke [J].Int J Mol Sci, 2016,17(12): 1967.
80
Barthels D, Das H.Current advances in ischemic stroke research and therapies [J].Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4):165260.
81
Gao X, Gao H, Yue K, et al.Observing extracellular vesicles originating from endothelial cells in vivo demonstrates improved astrocyte function following ischemic stroke via aggregation-induced emission luminogens [J].ACS Nano, 2023, 17(16): 16174-16191.
82
Yu Y, Zhou H, Xiong Y, et al.Exosomal miR-199a-5p derived from endothelial cells attenuates apoptosis and inflammation in neural cells by inhibiting endoplasmic reticulum stress [J].Brain Res, 2020, 1726: 146515.
83
Li C, Fei K, Tian F, et al.Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating miR-21-3p/MAT2B signaling transduction [J].Croat Med J, 2019, 60(5): 439-448.
84
Webb RL, Kaiser EE, Scoville SL, et al.Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model [J].Transl Stroke Res, 2018,9(5): 530-539.
85
Venkat P, Cui C, Chopp M, et al.MiR-126 mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice [J].Stroke, 2019, 50(10): 2865-2874.
86
Zheng Y, He R, Wang P, et al.Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization [J].Biomater Sci, 2019, 7(5): 2037-2049.
87
Norden DM, Fenn AM, Dugan A, et al.TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation [J].Glia, 2014,62(6): 881-895.
88
Zagrean AM, Hermann DM, Opris I, et al.Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia.Therapeutic implications [J].Front Neurosci, 2018, 12: 811.
89
Kim J, Lee HJ, Park SK, et al.Donepezil regulates LPS and Aβstimulated neuroinflammation through MAPK/NLRP3 inflammasome/STAT3 signaling [J].Int J Mol Sci, 2021, 22(19): 10637.
90
Zgórzyńska E, Stulczewski D, Dziedzic B, et al.Docosahexaenoic fatty acid reduces the pro-inflammatory response induced by IL-1β in astrocytes through inhibition of NF-κB and AP-1 transcription factor activation [J].BMC Neurosci, 2021, 22(1): 4.
91
Allen CL, Bayraktutan U.Oxidative stress and its role in the pathogenesis of ischaemic stroke [J].Int J Stroke, 2009, 4(6): 461-470.
92
Kang J, Pervaiz S.Mitochondria: redox metabolism and dysfunction [J].Biochem Res Int, 2012, 2012: 896751.
93
Bergendi L, Benes L, Duracková Z, et al.Chemistry, physiology and pathology of free radicals [J].Life Sci, 1999, 65(18-19): 1865-1874.
94
Zhang C, Liao P, Liang R, et al.Epigallocatechin gallate prevents mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis [J].Phytomedicine, 2019, 61: 152845.
95
Bao Q, Hu P, Xu Y, et al.Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles [J].ACS Nano, 2018, 12(7): 6794-6805.
96
Chen HS, Chen X, Li WT, et al.Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery [J].Acta Pharmacol Sin, 2018, 39(5): 669-682.
97
Deregibus MC, Cantaluppi V, Calogero R, et al.Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA [J].Blood, 2007,110(7): 2440-2448.
98
Morel O, Toti F, Hugel B, et al.Cellular microparticles: a disseminated storage pool of bioactive vascular effectors [J].Curr Opin Hematol,2004, 11(3): 156-164.
99
Vanhoutte PM, Shimokawa H, Feletou M, et al.Endothelial dysfunction and vascular disease-a 30th anniversary update [J].Acta Physiol (Oxf), 2017, 219(1): 22-96.
100
Dirnagl U, Iadecola C, Moskowitz MA.Pathobiology of ischaemic stroke: an integrated view [J].Trends Neurosci, 1999, 22(9): 391-397.
101
Lyden P, Buchan A, Boltze J, et al.Top priorities for cerebroprotective studies-a paradigm shift: report from STAIR XI [J].Stroke, 2021,52(9): 3063-3071.
102
Sun J, Yuan Q, Guo L, et al.Brain Microvascular endothelial cellderived exosomes protect neurons from ischemia-reperfusion injury in mice [J].Pharmaceuticals (Basel), 2022, 15(10): 1287.
103
Michiels C, Arnould T, Remacle J.Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions [J].Biochim Biophys Acta, 2000, 1497(1): 1-10.
104
Broughton BR, Reutens DC, Sobey CG.Apoptotic mechanisms after cerebral ischemia [J].Stroke, 2009, 40(5): e331-e339.
105
Sharghi-Namini S, Tan E, Ong LL, et al.Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment [J].Sci Rep, 2014, 4: 4031.
106
Deng Y, Chen D, Gao F, et al.Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2 [J].J Biol Eng, 2019, 13: 71.
107
Tsujimoto Y.Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? [J].Genes Cells, 1998, 3(11): 697-707.
108
Xiao B, Chai Y, Lv S, et al.Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury [J].Int J Mol Med, 2017, 40(4): 1201-1209.
109
Zhou S, Gao B, Sun C, et al.Vascular endothelial cell-derived exosomes protect neural stem cells against ischemia/reperfusion injury [J].Neuroscience, 2020, 441: 184-196.
110
He J, Liu J, Huang Y, et al.Oxidative stress, inflammation, and autophagy: potential targets of mesenchymal stem cells-based therapies in ischemic stroke [J].Front Neurosci, 2021, 15: 641157.
[1] 刘伟, 安杰, 智亮辉, 陈金辉. 阿帕替尼联合新辅助化疗对局部晚期结肠癌的临床疗效研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 199-203.
[2] 吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 186-192.
[3] 杨金朔, 吴桥伟, 王春雷, 史怀璋. 脑血管内支架成形术后再狭窄的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 174-179.
[4] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[5] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
[6] 吉莉, 苏云楠, 王斌, 沈滔, 刘团结, 毛蕾, 徐玉萍, 张婷, 王博. 急性缺血性脑卒中患者脑白质微结构改变对长期认知功能损伤的预测价值研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 193-200.
[7] 高振轩, 谢晨, 曹绍东, 甘中伟, 周倍, 罗朝川, 王子齐, 葛煜彤, 张伟光. 高分辨率核磁共振在颅颈大动脉狭窄介入治疗中的临床应用进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 112-119.
[8] 李旺俊, 王云霞. 抽吸联合支架取栓对超时间窗后循环缺血性脑卒中患者脑血灌注的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 352-357.
[9] 尹晓晴, 赵子萱, 杨帆, 敖峰, 林勇. D型人格与前循环急性缺血性脑卒中患者预后的相关性[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 206-211.
[10] 王增龙, 顾梅, 杭宇, 刘圣, 施海彬, 包建英. 急性大血管闭塞性脑卒中患者血管内治疗后吞咽障碍发生的危险因素分析[J/OL]. 中华介入放射学电子杂志, 2024, 12(01): 10-14.
[11] 冯盼, 梁秋华. 细胞间相互作用及代谢微环境在动脉钙化中的作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 193-198.
[12] 李小勇, 郭海志, 赵洋. QSM 联合SWI 预测急性缺血性脑卒中患者EVT 后神经功能的价值[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 549-555.
[13] 吴婷婷, 张薇, 何雅琪, 沈海清, 路敬叶, 张艳. 老年缺血性脑卒中患者早发型卒中后认知障碍发生情况及其影响因素分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 573-579.
[14] 江倩, 王红蕊, 朱玥荃, 李响, 耿晓坤, 李凤武. 药物诱导亚低温对缺血性脑卒中的神经保护作用及DRP-1 调控线粒体功能在其中的潜在分子机制[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 586-594.
[15] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
阅读次数
全文


摘要