切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 155 -160. doi: 10.3877/cma.j.issn.1673-9248.2025.02.011

综述

脑小血管病及其认知障碍研究进展
夏禹1, 刘寒2, 朱瑞1,()   
  1. 1. 230041 合肥,安徽医科大学合肥第三临床学院 合肥市第三人民医院神经内科
    2. 230041 合肥,安徽省公共卫生临床中心安徽医科大学第一附属医院神经内科
  • 收稿日期:2024-07-11 出版日期:2025-04-01
  • 通信作者: 朱瑞
  • 基金资助:
    合肥市卫生健康委2023 年应用医学项目(Hwk2023yb009)安徽医科大学青年科学基金项目(2023xkj119)安徽医科大学青年科技人才培养专项科研基金项目(2023cy015)安徽医科大学青年科学基金项目(2021xkj064)合肥市第三人民医院院级科研项目(SYKZ202301)

Research advances in cerebral small vessel disease and its associated cognitive impairment

Yu Xia1, Han Liu2, Rui Zhu1,()   

  1. 1. Third Clinical College of Anhui Medical University, Department of Neurology, Third People's Hospital of Hefei, Hefei 230041, China
    2. Anhui Public Health Clinical Center, Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230041, China
  • Received:2024-07-11 Published:2025-04-01
  • Corresponding author: Rui Zhu
引用本文:

夏禹, 刘寒, 朱瑞. 脑小血管病及其认知障碍研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 155-160.

Yu Xia, Han Liu, Rui Zhu. Research advances in cerebral small vessel disease and its associated cognitive impairment[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2025, 19(02): 155-160.

近年来,随着神经影像学技术的快速发展以及生物学标志物的不断更新、挖掘与探索,脑小血管病(CSVD)的检出率显著提高,其引起的认知障碍十分常见,且对我国公众生活质量造成巨大负面影响。因此CSVD 及其认知障碍也成了众多学者研究热点,同时也是研究难点。目前普遍认为炎性发病机制,尤其是脂蛋白相关磷脂酶A2(LP-PLA2)介导的血管炎症反应可能在CSVD 及其认知障碍的发病中起到至关重要的作用,比如通过破坏血脑屏障、损伤血管内皮结构与功能、加速动脉粥样硬化和慢性炎症感染状态持续影响CSVD 及其认知障碍的发生、发展。因此,本综述旨在探讨CSVD 认知障碍的研究进展以及以LP-PLA2 为代表的特定血管炎症反应在其发病中的生物学作用。

In recent years, the rapid advancement of neuroimaging techniques and the continuous discovery, validation and exploration of novel biomarkers have significantly increased the detection rate of cerebral small vessel disease (CSVD).Cognitive impairment caused by CSVD is highly prevalent and exerts a substantial negative impact on the quality of life among the Chinese population.Consequently, CSVD and its associated cognitive impairment have emerged as both a major focus and a substantial challenge in scientific research.Current evidence strongly supports that inflammatory mechanisms, particularly vascular inflammatory responses mediated by lipoprotein-associated phospholipase A2 (LP-PLA2), play a critical role in the pathogenesis and progression of CSVD and its cognitive sequelae.For instance, LP-PLA2-driven pathways may contribute to blood-brain barrier disruption, structural and functional damage to vascular endothelium, acceleration of atherosclerosis, and sustained chronic inflammatory states, all of which collectively influence the initiation and progression of CSVD-related cognitive impairment.This review aims to synthesize recent advances in understanding cognitive impairment in CSVD and to elucidate the biological role of LPPLA2 as a representative mediator of specific vascular inflammatory responses in its pathological cascade.

1
Zanon-Zotin MC, Sveikata L, Viswanathan A, et al.Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management [J].Curr Opin Neurol, 2021, 34(2): 246-257.
2
Markus HS, de Leeuw FE.Cerebral small vessel disease: recent advances and future directions [J].Int J Stroke, 2023, 18(1): 4-14.
3
Wardlaw JM, Smith C, Dichgans M.Small vessel disease: mechanisms and clinical implications [J].Lancet Neurol, 2019, 18(7): 684-696.
4
Liu Y, Dong YH, Lyu PY, et al.Hypertension-induced cerebral small vessel disease leading to cognitive impairment [J].Chin Med J (Engl) ,2018, 131(5): 615-619.
5
Gao Y, Li D, Lin J, et al.Cerebral small vessel disease: Pathological mechanisms and potential therapeutic targets [J].Front Aging Neurosci, 2022, 14: 961661.
6
Dichgans M, Leys D.Vascular Cognitive Impairment [J].Circ Res,2017, 120(3): 573-591.
7
Teng Z, Dong Y, Zhang D, et al.Cerebral small vessel disease and post-stroke cognitive impairment [J].Int J Neurosci, 2017, 127(9):824-830.
8
Evans LE, Taylor JL, Smith CJ, et al.Cardiovascular comorbidities,inflammation, and cerebral small vessel disease [J].Cardiovasc Res,2021, 117(13): 2575-2588.
9
Tian Y, Zhao M, Chen Y, et al.The underlying role of the glymphatic system and meningeal lymphatic vessels in cerebral small vessel disease [J].Biomolecules, 2022, 12(6): 748.
10
Pasi M, Sugita L, Xiong L, et al.Association of cerebral small vessel disease and cognitive decline after intracerebral hemorrhage [J].Neurology, 2021, 96(2): e182-e192.
11
Tang J, Zhang M, Liu N, et al.The association between glymphatic system dysfunction and cognitive impairment in cerebral small vessel disease [J].Front Aging Neurosci, 2022, 14: 916633.
12
Wardlaw JM, Debette S, Jokinen H, et al.ESO Guideline on covert cerebral small vessel disease [J].Eur Stroke J, 2021, 6(2): CXICLXII.
13
Georgakis MK, Fang R, During M, et al.Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: a multicenter prospective cohort study [J].Alzheimers Dement, 2023,19(4): 1152-1163.
14
Sachdev PS, Brodaty H, Valenzuela MJ, et al.The neuropsychological profile of vascular cognitive impairment in stroke and TIA patients [J].Neurology, 2004, 62(6): 912-919.
15
Akinyemi RO, Owolabi MO, Ihara M, et al.Stroke, cerebrovascular diseases and vascular cognitive impairment in Africa [J].Brain Res Bull, 2019, 145: 97-108.
16
Uemura MT, Maki T, Ihara M, et al.Brain microvascular pericytes in vascular cognitive impairment and dementia [J].Front Aging Neurosci,2020, 14: 12: 80.
17
Duncombe J, Kitamura A, Hase Y, et al.Chronic cerebral hypoperfusion:a key mechanism leading to vascular cognitive impairment and dementia.Closing the translational gap between rodent models and human vascular cognitive impairment and dementia [J].Clin Sci (Lond),2017, 131(19): 2451-2468.
18
Kalaria RN.Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer's disease [J].Acta Neuropathol, 2016, 131(5): 659-685.
19
Alber J, Alladi S, Bae HJ, et al.White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID):knowledge gaps and opportunities [J].Alzheimers Dement (N Y),2019, 9(5): 107-117.
20
Kliper E, Ben Assayag E, Tarrasch R, et al.Cognitive state following stroke: the predominant role of preexisting white matter lesions [J].PLoS One, 2014, 9(8): e105461.
21
Kang HJ, Stewart R, Park MS, et al.White matter hyperintensities and functional outcomes at 2 weeks and 1 year after stroke [J].Cerebrovasc Dis, 2013, 35(2): 138-145.
22
Brier MR, Blazey T, Raichle ME, et al.Increased white matter glycolysis in humans with cerebral small vessel disease [J].Nat Aging,2022, 2(11): 991-999.
23
Burton EJ, Kenny RA, O'Brien J, et al.White matter hyperintensities are associated with impairment of memory, attention, and global cognitive performance in older stroke patients [J].Stroke, 2004, 35(6):1270-1275.
24
Hainsworth AH.White matter lesions in cerebral small vessel disease:underperfusion or leaky vessels? [J].Neurology, 2019, 92(15):687-688.
25
Jokinen H, Kalska H, Mantyla R, et al.White matter hyperintensities as a predictor of neuropsychological deficits post-stroke [J].J Neurol Neurosurg Psychiatry, 2005, 76(9): 1229-1233.
26
Yuzkan S, Balsak S, Cinkir U, et al.Multiple sclerosis versus cerebral small vessel disease in MRI: a practical approach using qualitative and quantitative signal intensity differences in white matter lesions [J].Acta Radiol, 2023, 2: 2841851231155608.
27
Firbank MJ, Burton EJ, Barber R, et al.Medial temporal atrophy rather than white matter hyperintensities predict cognitive decline in stroke survivors [J].Neurobiol Aging , 2007, 28(11): 1664-1669.
28
Wu X, Klomparens K, Chen Z, et al.Different patterns of white matter lesions among patent foramen ovale, atherosclerotic cerebral small vessel disease and cerebral venous thrombosis [J].J Thromb Thrombolysis, 2022, 53(4): 911-925.
29
Wardlaw JM, Smith EE, Biessels GJ, et al.Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J].Lancet Neurol, 2013, 12(8): 822-838.
30
Wardlaw JM, Smith C, Dichgans M.Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging [J].Lancet Neurol,2013, 12(5): 483-497.
31
Makin SD, Turpin S, Dennis MS, et al.Cognitive impairment after lacunar stroke: systematic review and meta-analysis of incidence,prevalence and comparison with other stroke subtypes [J].J Neurol Neurosurg Psychiatry, 2013, 84(8): 893-900.
32
Chen CF, Lan SH, Khor GT, et al.Cognitive dysfunction after acute lacunar infarct [J].Kaohsiung J Med Sci, 2005, 21(6): 267-271.
33
Edwards JD, Jacova C, Sepehry AA, et al.A quantitative systematic review of domain-specific cognitive impairment in lacunar stroke [J].Neurology, 2013, 80(3): 315-322.
34
Blanco-Rojas L, Arboix A, Canovas D, et al.Cognitive profile in patients with a first-ever lacunar infarct with and without silent lacunes: a comparative study [J].BMC Neurol, 2013, 16(13): 203.
35
Wardlaw JM, Woodhouse LJ, Mhlanga II, et al; Lacunar Intervention Trial-2 (LACI-2) Investigator Group.Isosorbide Mononitrate and Cilostazol treatment in patients with symptomatic cerebral small vessel disease: the lacunar intervention trial-2 (LACI-2) randomized clinical trial [J].JAMA Neurol, 2023, 80(7): 682-692.
36
Poels MM, Ikram MA, van der Lugt A, et al.Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study [J].Neurology, 2012, 78(5): 326-333.
37
Cordonnier C, Al-Shahi Salman R, Wardlaw J.Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting [J].Brain, 2007, 130(Pt 8): 1988-2003.
38
Werring DJ, Frazer DW, Coward LJ, et al.Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI [J].Brain, 2004, 127(Pt 10): 2265-2275.
39
Gregoire SM, Smith K, Jager HR, et al.Cerebral microbleeds and long-term cognitive outcome: longitudinal cohort study of stroke clinic patients [J].Cerebrovasc Dis, 2012, 33(5): 430-435.
40
Patel N, Banahan C, Janus J, et al.Perioperative cerebral microbleeds after adult cardiac surgery [J].Stroke, 2019, 50(2): 336-343.
41
Tang WK, Chen YK, Lu JY, et al.Absence of cerebral microbleeds predicts reversion of vascular 'cognitive impairment no dementia' in stroke [J].Int J Stroke, 2011, 6(6): 498-505.
42
Miwa K, Koga M, Inoue M, et al.Cerebral microbleeds development after stroke thrombolysis: a secondary analysis of the THAWS randomized clinical trial [J].Int J Stroke, 2022, 17(6): 628-636.
43
Smith EE, Schneider JA, Wardlaw JM, et al.Cerebral microinfarcts:the invisible lesions [J].Lancet Neurol, 2012, 11(3): 272-282.
44
Wang M, Ding F, Deng S, et al.Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts [J].J Neurosci, 2017, 37(11): 2870-2877.
45
Louveau A, Smirnov I, Keyes TJ, et al.Structural and functional features of central nervous system lymphatic vessels [J].Nature, 2015,523(7560): 337-341.
46
Launer LJ, Hughes TM, White LR.Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study [J].Ann Neurol, 2011, 70(5): 774-780.
47
Marc G, Dubas F.Cerebral microangiopathies [J].Psychol Neuropsychiatr Vieil, 2005, 3(2): 83-88.
48
Zhang L, Biessels GJ, Hilal S, et al.Cerebral microinfarcts affect brain structural network topology in cognitively impaired patients [J].J Cereb Blood Flow Metab, 2021, 41(1): 105-115.
49
Brown R, Benveniste H, Black SE, et al.Understanding the role of the perivascular space in cerebral small vessel disease [J].Cardiovasc Res,2018, 114(11): 1462-1473.
50
Benveniste H, Nedergaard M.Cerebral small vessel disease: A glymphopathy? [J].Curr Opin Neurobiol, 2022, 72: 15-21.
51
Yu L, Hu X, Li H, et al.Perivascular spaces, glymphatic system and MR [J].Front Neurol, 2022, 13: 844938.
52
Jiang R, Chen S, Shen Y, et al.Higher levels of lipoprotein associated phospholipase A2 is associated with increased prevalence of cognitive impairment: the APAC Study [J].Sci Rep, 2016, 9: 6: 33073.
53
Libby P, Ridker PM, Hansson GK.Progress and challenges in translating the biology of atherosclerosis [J].Nature, 2011, 473(7347):317-325.
54
Walker KA, Power MC, Hoogeveen RC, et al.Midlife systemic inflammation, late-life white matter integrity, and cerebral small vessel disease: the atherosclerosis risk in communities study [J].Stroke,2017, 48(12): 3196-3202.
55
Jalal FY, Yang Y, Thompson J, et al.Myelin loss associated with neuroinflammation in hypertensive rats [J].Stroke, 2012, 43(4):1115-1122.
56
Jalal FY, Yang Y, Thompson JF, et al.Hypoxia-induced neuroinflammatory white-matter injury reduced by minocycline in SHR/SP [J].J Cereb Blood Flow Metab, 2015, 35(7): 1145-1153.
57
Liu L, Zhang X, Jiang N, et al.Plasma lipoprotein-associated phospholipase A2 affects cognitive impairment in patients with cerebral microbleeds [J].Neuropsychiatr Dis Treat, 2023, 19:635-646.
58
Dhamoon MS, Cheung YK, Moon YP, et al.Interleukin-6 and lipoprotein-associated phospholipase A2 are associated with functional trajectories [J].PLoS one, 2019, 14(4): e0214784.
59
Dhana A, DeCarli C, Dhana K, et al.White matter hyperintensity,neurofilament light chain, and cognitive decline [J].Ann Clin Transl Neurol, 2023,10(3): 321-327.
60
Li BH, Du BY, Gu ZS, et al.Correlations among peripheral blood markers, white matter hyperintensity, and cognitive function in patients with non-disabling ischemic cerebrovascular events [J].Front Aging Neurosci, 2022, 14: 1023195.
[1] 陈昊, 富建华. 基于床旁即时超声指导新生儿脓毒性休克救治的临床应用研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 67-72.
[2] 李一萱, 李美和, 郑瑾. 肾移植缺血再灌注损伤机制及其对移植肾的影响[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 43-49.
[3] 熊伟, 杨华, 肖现, 黄仁强, 卢昆, 王松青. 炎症反应与创伤性脊髓损伤严重程度及神经功能改善的相关性[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(06): 330-339.
[4] 廖晓凌. 血管性认知障碍的评估与诊断[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 166-166.
[5] 李雯婷, 高聪, 廖晓凌. 卒中后认知障碍的危险因素及临床预测模型的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 81-86.
[6] 杜润宜, 张玉梅, 刘利鹏, 公维军. 认知-运动双重任务训练对卒中后认知障碍的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 87-93.
[7] 程安琪, 邹胤曦, 司倩倩, 范晓媛, 张晓倩, 李明利, 冯逢, 刘彩燕, 徐蔚海. 无症状大脑后动脉粥样硬化性狭窄与认知功能的关系[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 94-99.
[8] 韩琪, 温田思宇, 肖以钦, 崔梅. 视网膜厚度与脑小血管病认知障碍的相关性[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 109-114.
[9] 黄虎, 宋春杰, 刘志伟, 陈兴, 朱发勇, 韩远远. 脑小血管病总负荷对急性前循环大血管闭塞梗死增长率及临床转归的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 141-148.
[10] 杨毅, 申珅, 万孟夏, 张拥波. 术前外周血炎症指标对颈动脉支架置入术后同侧新发无症状缺血性脑损伤的预测价值[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 13-18.
[11] 吴亚琨, 冯凯, 于海华. 数字疗法对非痴呆型脑小血管病认知障碍患者认知功能、日常生活能力及生活质量的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 535-541.
[12] 夏振西, 谢鸿阳, 夏翠俏, 张楠, 曹俊杰, 赵弘轶, 黄勇华. 脑小血管病患者体脂百分比与步态特征及跌倒的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 556-563.
[13] 吴婷婷, 张薇, 何雅琪, 沈海清, 路敬叶, 张艳. 老年缺血性脑卒中患者早发型卒中后认知障碍发生情况及其影响因素分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 573-579.
[14] 王育伟, 杨琼, 丁文华, 邱景景, 耿玉荣. 脑小血管病排尿障碍研究进展及机制探讨[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 606-610.
[15] 赵伟伟, 赵玉华, 刘小璇. 西藏地区亚甲基四氢叶酸还原酶C677T多态性及其与脑微出血的相关性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 473-478.
阅读次数
全文


摘要