切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 267 -273. doi: 10.3877/cma.j.issn.1673-9248.2025.04.001

专家论坛

脑小血管病与步态和平衡功能障碍相关性的研究进展
毛程璐, 徐运()   
  1. 210008 南京大学医学院附属鼓楼医院神经内科
  • 收稿日期:2024-11-21 出版日期:2025-08-01
  • 通信作者: 徐运
  • 基金资助:
    科技创新2030-脑科学与类脑研究重大项目(2022ZD0211800); 国家自然科学基金资助项目(8192010801782130036); 江苏省科技厅医学重点项目(BE2020620); “十四五”江苏省医学重点学科(ZDXK202216)

Advances in research on the association between cerebral small vessel disease and gait and balance dysfunction

Chenglu Mao, Yun Xu()   

  1. Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
  • Received:2024-11-21 Published:2025-08-01
  • Corresponding author: Yun Xu
引用本文:

毛程璐, 徐运. 脑小血管病与步态和平衡功能障碍相关性的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(04): 267-273.

Chenglu Mao, Yun Xu. Advances in research on the association between cerebral small vessel disease and gait and balance dysfunction[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2025, 19(04): 267-273.

脑小血管病(CSVD)是各种病因影响颅内小血管所致的一组临床、影像和病理学综合征。步态和平衡功能障碍是CSVD第二大常见临床表现,在老年人中常见。越来越多的研究关注CSVD引起的步态和平衡功能障碍的潜在机制,但目前尚未达成共识,两者的相关性同样存在较多争议。本文综述了CSVD与步态和平衡功能障碍相关性的研究现状,以期加深认识和理解,为未来研究提供参考。

Cerebral small vessel disease (CSVD) refers to a group of clinical, imaging, and pathological syndromes resulting from various etiologies affecting intracranial small vessels. Gait and balance disturbances, commonly observed in the elderly, represent the second most frequent clinical manifestations of CSVD. An increasing number of studies have investigated the potential mechanisms underlying CSVD-induced gait and balance disturbances. However, no consensus has been reached, and considerable debate persists regarding their relationship. This review summarizes the current findings the association between CSVD and gait and balance disturbances, aiming to enhance understanding and provide a foundation for future investigations.

1
胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021 [J]. 中国卒中杂志, 2021, 16(7): 716-726.
2
Moran C, Phan TG, Srikanth VK. Cerebral small vessel disease: a review of clinical, radiological, and histopathological phenotypes [J]. Int J Stroke, 2012, 7(1): 36-46.
3
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges [J]. Lancet Neurol, 2010, 9(7): 689-701.
4
Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses [J]. Neuropathol Appl Neurobiol, 2007, 33(4): 410-419.
5
Ylikoski A, Erkinjuntti T, Raininko R, et al. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home [J]. Stroke, 1995, 26(7): 1171-1177.
6
Vermeer SE, Longstreth WJ, Koudstaal PJ. Silent brain infarcts: a systematic review [J]. Lancet Neurol, 2007, 6(7): 611-619.
7
Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International stroke incidence collaboration [J]. Stroke, 1997, 28(3): 491-499.
8
Chen Y, Chen X, Mok VC, et al. Poststroke depression in patients with small subcortical infarcts [J]. Clin Neurol Neurosurg, 2009, 111(3): 256-260.
9
Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation [J]. Lancet Neurol, 2009, 8(2): 165-174.
10
Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study [J]. Stroke, 2010, 41(10 Suppl): S103-S106.
11
Smith EE, O'Donnell M, Dagenais G, et al. Early cerebral small vessel disease and brain volume, cognition, and gait [J]. Ann Neurol, 2015, 77(2): 251-261.
12
Ding J, Sigurethsson S, Jonsson PV, et al. Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia: the age, gene/environment susceptibility-reykjavik study [J]. JAMA Neurol, 2017, 74(9): 1105-1112.
13
Rizzolatti G, Luppino G. The cortical motor system [J]. Neuron, 2001, 31(6): 889-901.
14
Osoba MY, Rao AK, Agrawal SK, et al. Balance and gait in the elderly: a contemporary review [J]. Laryngoscope Investig Otolaryngol, 2019, 4(1): 143-153.
15
Martin KL, Blizzard L, Srikanth VK, et al. Cognitive function modifies the effect of physiological function on the risk of multiple falls--a population-based study [J]. J Gerontol A Biol Sci Med Sci, 2013, 68(9): 1091-1097.
16
Mo Y, Mao C, Yang D, et al. Altered neuroimaging patterns of cerebellum and cognition underlying the gait and balance dysfunction in cerebral small vessel disease [J]. Front Aging Neurosci, 2023, 15: 1117973.
17
Steffen TM, Hacker TA, Mollinger L. Age- and gender-related test performance in community-dwelling elderly people: six-minute walk test, berg balance scale, timed up & go test, and gait speeds [J]. Phys Ther, 2002, 82(2): 128-137.
18
Welch SA, Ward RE, Beauchamp MK, et al. The short physical performance battery (SPPB): a quick and useful tool for fall risk stratification among older primary care patients [J]. J Am Med Dir Assoc, 2021, 22(8): 1646-1651.
19
Xia C, Xie H, Li T, et al. Spatiotemporal gait characteristics during single- and dual-task walking are associated with the burden of cerebral small vessel disease [J]. Front Neurol, 2023, 14: 1285947.
20
Lin S, Gao C, Li H, et al. Wearable sensor-based gait analysis to discriminate early Parkinson's disease from essential tremor [J]. J Neurol, 2023, 270(4): 2283-2301.
21
毛程璐, 莫雨婷, 杨丹, 等. 轻度认知功能障碍的中老年社区人群步态特征的探索 [J]. 中风与神经疾病杂志, 2023, 40(1): 14-19.
22
Catani M, Howard RJ, Pajevic S, et al. Virtual in vivo interactive dissection of white matter fasciculi in the human brain [J]. Neuroimage, 2002, 17(1): 77-94.
23
Lawrence DG, Hopkins DA. The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections [J]. Brain, 1976, 99(2): 235-254.
24
Fang PC, Stepniewska I, Kaas JH. Corpus callosum connections of subdivisions of motor and premotor cortex, and frontal eye field in a prosimian primate, Otolemur garnetti [J]. J Comp Neurol, 2008, 508(4): 565-578.
25
Srikanth V, Phan TG, Chen J, et al. The location of white matter lesions and gait--a voxel-based study [J]. Ann Neurol, 2010, 67(2): 265-269.
26
Pinter D, Ritchie SJ, Doubal F, et al. Impact of small vessel disease in the brain on gait and balance [J]. Sci Rep, 2017, 7: 41637.
27
van der Holst HM, Tuladhar AM, Zerbi V, et al. White matter changes and gait decline in cerebral small vessel disease [J]. Neuroimage Clin, 2018, 17: 731-738.
28
Zheng JJ, Lord SR, Close JC, et al. Brain white matter hyperintensities, executive dysfunction, instability, and falls in older people: a prospective cohort study [J]. J Gerontol A Biol Sci Med Sci, 2012, 67(10): 1085-1091.
29
Srikanth V, Beare R, Blizzard L, et al. Cerebral white matter lesions, gait, and the risk of incident falls: a prospective population-based study [J]. Stroke, 2009, 40(1): 175-180.
30
Doi T, Shimada H, Makizako H, et al. Effects of white matter lesions on trunk stability during dual-task walking among older adults with mild cognitive impairment [J]. Age (Dordr), 2015, 37(6): 120.
31
de Laat KF, van Norden AG, Gons RA, et al. Gait in elderly with cerebral small vessel disease [J]. Stroke, 2010, 41(8): 1652-1658.
32
Rasmussen L, Caspi A, Ambler A, et al. Association of neurocognitive and physical function with gait speed in midlife [J]. JAMA Netw Open, 2019, 2(10): e1913123.
33
Hairu R, Close J, Lord SR, et al. The association between white matter hyperintensity volume and gait performance under single and dual task conditions in older people with dementia: a cross-sectional study [J]. Arch Gerontol Geriatr, 2021, 95: 104427.
34
Pinter D, Ritchie SJ, Gattringer T, et al. Predictors of gait speed and its change over three years in community-dwelling older people [J]. Aging (Albany NY), 2018, 10(1): 144-153.
35
Sullivan KJ, Ranadive R, Su D, et al. Imaging-based indices of Neuropathology and gait speed decline in older adults: the atherosclerosis risk in communities study [J]. Brain Imaging Behav, 2021, 15(5): 2387-2396.
36
Soumare A, Elbaz A, Zhu Y, et al. White matter lesions volume and motor performances in the elderly [J]. Ann Neurol, 2009, 65(6): 706-715.
37
de Laat KF, Tuladhar AM, van Norden AG, et al. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease [J]. Brain, 2011, 134(Pt 1): 73-83.
38
Kim YJ, Kwon HK, Lee JM, et al. Gray and white matter changes linking cerebral small vessel disease to gait disturbances [J]. Neurology, 2016, 86(13): 1199-1207.
39
Scherder E, Dekker W, Eggermont L. Higher-level hand motor function in aging and (preclinical) dementia: its relationship with (instrumental) activities of daily life--a mini-review [J]. Gerontology, 2008, 54(6): 333-341.
40
Su N, Zhai FF, Zhou LX, et al. Cerebral small vessel disease burden is associated with motor performance of lower and upper extremities in community-dwelling populations [J]. Front Aging Neurosci, 2017, 9: 313.
41
Duchowny KA, Ackley SF, Brenowitz WD, et al. Associations between handgrip strength and dementia risk, cognition, and neuroimaging outcomes in the UK biobank cohort study [J]. JAMA Netw Open, 2022, 5(6): e2218314.
42
Liu SW, Ma XT, Yu S, et al. Bridging reduced grip strength and altered executive function: specific brain white matter structural changes in patients with Alzheimer's disease [J]. Clin Interv Aging, 2024, 19: 93-107.
43
DiSalvio NL, Rosano C, Aizenstein HJ, et al. Gray matter regions associated with functional mobility in community-dwelling older adults [J]. J Am Geriatr Soc, 2020, 68(5): 1023-1028.
44
Seiler S, Pirpamer L, Gesierich B, et al. Lower magnetization transfer ratio in the forceps minor is associated with poorer gait velocity in older adults [J]. AJNR Am J Neuroradiol, 2017, 38(3): 500-506.
45
van der Holst HM, van Uden I, de Laat KF, et al. Baseline cerebral small vessel disease is not associated with gait decline after five years [J]. Mov Disord Clin Pract, 2017, 4(3): 374-382.
46
Bazner H, Oster M, Daffertshofer M, et al. Assessment of gait in subcortical vascular encephalopathy by computerized analysis: a cross-sectional and longitudinal study [J]. J Neurol, 2000, 247(11): 841-849.
47
Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe [J]. Mov Disord, 2013, 28(11): 1483-1491.
48
Callisaya ML, Srikanth VK, Lord SR, et al. Sub-cortical infarcts and the risk of falls in older people: combined results of TASCOG and Sydney MAS studies [J]. Int J Stroke, 2014, 9 Suppl A100: 55-60.
49
Rosano C, Kuller LH, Chung H, et al. Subclinical brain magnetic resonance imaging abnormalities predict physical functional decline in high-functioning older adults [J]. J Am Geriatr Soc, 2005, 53(4): 649-654.
50
Rosano C, Brach J, Longstreth WJ, et al. Quantitative measures of gait characteristics indicate prevalence of underlying subclinical structural brain abnormalities in high-functioning older adults [J]. Neuroepidemiology, 2006, 26(1): 52-60.
51
Stijntjes M, de Craen AJ, van der Grond J, et al. Cerebral microbleeds and lacunar infarcts are associated with walking speed independent of cognitive performance in middle-aged to older adults [J]. Gerontology, 2016, 62(5): 500-507.
52
Choi P, Ren M, Phan TG, et al. Silent infarcts and cerebral microbleeds modify the associations of white matter lesions with gait and postural stability: population-based study [J]. Stroke, 2012, 43(6): 1505-1510.
53
Verwer JH, Biessels GJ, Heinen R, et al. Occurrence of impaired physical performance in memory clinic patients with cerebral small vessel disease [J]. Alzheimer Dis Assoc Disord, 2018, 32(3): 214-219.
54
Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study [J]. Neurology, 2008, 70(14): 1208-1214.
55
Werring DJ, Gregoire SM, Cipolotti L. Cerebral microbleeds and vascular cognitive impairment [J]. J Neurol Sci, 2010, 299(1-2): 131-135.
56
Tabara Y, Okada Y, Ohara M, et al. Association of postural instability with asymptomatic cerebrovascular damage and cognitive decline: the Japan Shimanami health promoting program study [J]. Stroke, 2015, 46(1): 16-22.
57
Kelly VE, Janke AA, Shumway-Cook A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults [J]. Exp Brain Res, 2010, 207(1-2): 65-73.
58
de Laat KF, van den Berg HA, van Norden AG, et al. Microbleeds are independently related to gait disturbances in elderly individuals with cerebral small vessel disease [J]. Stroke, 2011, 42(2): 494-497.
59
Mao HJ, Zhang JX, Zhu WC, et al. Basal ganglia and brainstem located cerebral microbleeds contributed to gait impairment in patients with cerebral small vessel disease [J]. J Alzheimers Dis, 2023, 94(3): 1005-1012.
60
Li P, Wang Y, Jiang Y, et al. Cerebral small vessel disease is associated with gait disturbance among community-dwelling elderly individuals: the Taizhou imaging study [J]. Aging (Albany NY), 2020, 12(3): 2814-2824.
61
Callisaya ML, Beare R, Phan TG, et al. Brain structural change and gait decline: a longitudinal population-based study [J]. J Am Geriatr Soc, 2013, 61(7): 1074-1079.
62
Tripathi S, Verghese J, Blumen HM. Gray matter volume covariance networks associated with dual-task cost during walking-while-talking [J]. Hum Brain Mapp, 2019, 40(7): 2229-2240.
63
Dumurgier J, Crivello F, Mazoyer B, et al. MRI atrophy of the caudate nucleus and slower walking speed in the elderly [J]. Neuroimage, 2012, 60(2): 871-878.
64
Rosano C, Aizenstein HJ, Studenski S, et al. A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults [J]. J Gerontol A Biol Sci Med Sci, 2007, 62(9): 1048-1055.
65
Rosano C, Aizenstein H, Brach J, et al. Special article: gait measures indicate underlying focal gray matter atrophy in the brain of older adults [J]. J Gerontol A Biol Sci Med Sci, 2008, 63(12): 1380-1388.
66
Mo Y, Ji B, Ke Z, et al. Stride length and cerebellar regulation: key features of early gait disorder in cerebral small vessel disease [J]. CNS Neurosci Ther, 2024, 30(2): e14545.
67
Su N, Liang X, Zhai FF, et al. The consequence of cerebral small vessel disease: linking brain atrophy to motor impairment in the elderly [J]. Hum Brain Mapp, 2018, 39(11): 4452-4461.
68
Wang L, Lin H, Peng Y, et al. Incidental brain magnetic resonance imaging findings and the cognitive and motor performance in the elderly: the Shanghai Changfeng study [J]. Front Neurosci, 2021, 15: 631087.
69
Heiland EG, Welmer AK, Kalpouzos G, et al. Cerebral small vessel disease, cardiovascular risk factors, and future walking speed in old age: a population-based cohort study [J]. BMC Neurol, 2021, 21(1): 496.
70
Wan Y, Hu W, Gan J, et al. Exploring the association between cerebral small-vessel diseases and motor symptoms in Parkinson's disease [J]. Brain Behav, 2019, 9(4): e1219.
71
Staals J, Booth T, Morris Z, et al. Total MRI load of cerebral small vessel disease and cognitive ability in older people [J]. Neurobiol Aging, 2015, 36(10): 2806-2811.
72
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.
73
焦爱菊, 赵玮婧, 文淑梅, 等. 步态运动学特征及MRI总负荷与脑小血管病步态障碍患者跌倒风险的相关性研究 [J]. 中国康复医学杂志, 2024, 39(1): 70-75.
74
Loos CM, McHutchison C, Cvoro V, et al. The relation between total cerebral small vessel disease burden and gait impairment in patients with minor stroke [J]. Int J Stroke, 2018, 13(5): 518-524.
[1] 阳敏, 廖江秀, 章国智, 张晔, 范林军. 常规超声联合临床特征对甲状腺微小乳头状癌中央区淋巴结转移的术前诊断价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 396-400.
[2] 王华, 曹素娥, 吴建杰, 狄金明. 膀胱炎性肌纤维母细胞瘤四例诊治报告并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 547-552.
[3] 孙雅娟, 杨柳, 徐婧梅, 谭明超, 刘寰. 肺黏液表皮样癌的CT 影像特征分析—附4 例报告[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 491-493.
[4] 张轩, 冯明, 王倩, 薛蓉. 舒脑欣滴丸对脑小血管病患者客观睡眠和炎症标志物的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 140-145.
[5] 刘万虎, 步玮, 董玉娟, 李文君, 贾亚南, 刘翠翠, 任慧玲. 脑小血管病患者步态障碍及认知障碍与神经影像学特征的相关性[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 198-206.
[6] 赵伟伟, 李季, 焦好, 刘小璇, 赵玉华. 北京和西藏地区脑小血管病患者的危险因素[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 191-197.
[7] 夏禹, 刘寒, 朱瑞. 脑小血管病及其认知障碍研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 155-160.
[8] 黄虎, 宋春杰, 刘志伟, 陈兴, 朱发勇, 韩远远. 脑小血管病总负荷对急性前循环大血管闭塞梗死增长率及临床转归的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 141-148.
[9] 韩琪, 温田思宇, 肖以钦, 崔梅. 视网膜厚度与脑小血管病认知障碍的相关性[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 109-114.
[10] 王育伟, 杨琼, 丁文华, 邱景景, 耿玉荣. 脑小血管病排尿障碍研究进展及机制探讨[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 606-610.
[11] 夏振西, 谢鸿阳, 夏翠俏, 张楠, 曹俊杰, 赵弘轶, 黄勇华. 脑小血管病患者体脂百分比与步态特征及跌倒的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 556-563.
[12] 吴亚琨, 冯凯, 于海华. 数字疗法对非痴呆型脑小血管病认知障碍患者认知功能、日常生活能力及生活质量的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 535-541.
[13] 赵伟伟, 赵玉华, 刘小璇. 西藏地区亚甲基四氢叶酸还原酶C677T多态性及其与脑微出血的相关性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 473-478.
[14] 沙宇惠, 梁梦琳, 贾琛皓, 吴娟娟, 张天昊, 朱以诚, 崔瑞雪, 倪俊. 脑淀粉样血管病β淀粉样蛋白沉积特征及其与影像学标志物的关系[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 301-308.
[15] 王梦欣, 李莫凡, 王淑敏. 脑微循环成像技术在脑小血管病中的应用研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(03): 281-284.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?