切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 274 -279. doi: 10.3877/cma.j.issn.1673-9248.2025.04.002

专家论坛

乳酸与乳酸化在缺血性卒中中的作用机制和研究进展
乔红梅, 张京芬(), 王宝军   
  1. 014040 内蒙古 包头,包头市中心医院神经内科
  • 收稿日期:2025-02-01 出版日期:2025-08-01
  • 通信作者: 张京芬

Mechanism and research progress of lactic acid and lactylation in ischemic stroke

Hongmei Qiao, Jingfen Zhang(), Baojun Wang   

  1. Department of Neurology, Baotou Central Hospital, Baotou 014040, China
  • Received:2025-02-01 Published:2025-08-01
  • Corresponding author: Jingfen Zhang
引用本文:

乔红梅, 张京芬, 王宝军. 乳酸与乳酸化在缺血性卒中中的作用机制和研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(04): 274-279.

Hongmei Qiao, Jingfen Zhang, Baojun Wang. Mechanism and research progress of lactic acid and lactylation in ischemic stroke[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2025, 19(04): 274-279.

乳酸在神经系统中不仅是重要的能量代谢产物,还参与细胞功能的调节。在缺氧和神经元活动增强时,星形胶质细胞可通过糖酵解生成乳酸,并通过乳酸穿梭机制为神经元提供能量支持。卒中引发的缺血缺氧可显著增加乳酸的生成,其不仅可参与能量供应,还影响乳酸化修饰,并作为信号分子参与信号传导发挥细胞调控作用。本文探讨乳酸代谢和乳酸化在卒中中的变化及其对神经保护和修复的影响,为卒中的临床治疗提供新的思路和策略。

Lactate serves not only an important energy metabolite in the nervous system but also participates in the regulation of cellular functions. Under conditions of hypoxia or increased neuronal activity, astrocytes generate lactate through glycolysis, providing energy support to neurons via the lactate shuttle mechanism. Stroke-induced ischemia and hypoxia significantly elevate lactate levels. Lactate not only contributes to energy metabolism but also influences lactylation modifications and functions as a signaling molecule in cellular regulation. This article reviews the alterations in lactate metabolism and lactylation during ischemic stroke and their impacts on neuroprotection and recovery, offering new insights and strategies for clinical treatment of stroke.

1
Fernández-Moncada I, Lavanco G, Fundazuri UB, et al. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice [J]. Nat Commun, 2024, 15(1): 6842.
2
Zhang Y, Tong L, Ma L, et al. Progress in the research of lactate metabolism disruption and astrocyte-neuron lactate shuttle impairment in schizophrenia: a comprehensive review [J]. Adv Biol (Weinh), 2024, 8(6): e2300409.
3
Salmina AB, Kuvacheva NV, Morgun AV, et al. Glycolysis-mediated control of blood-brain barrier development and function [J]. Int J Biochem Cell Biol, 2015, 64: 174-184.
4
Xu K, Zhang K, Wang Y, et al. Comprehensive review of histone lactylation: structure, function, and therapeutic targets [J]. Biochem Pharmacol, 2024, 225: 116331.
5
Zanza C, Facelli V, Romenskaya T, et al. Lactic acidosis related to pharmacotherapy and human diseases [J]. Pharmaceuticals (Basel), 2022, 15(12): 1496.
6
Remund B, Yilmaz B, Sokollik C. D-lactate: implications for gastrointestinal diseases [J]. Children (Basel), 2023, 10(6): 945.
7
Yiew N, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism [J]. Am J Physiol Endocrinol Metab, 2022, 323(1): E33-E52.
8
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease [J]. Cell Mol Life Sci, 2014, 71(14): 2577-2604.
9
Margineanu MB, Mahmood H, Fiumelli H, et al. L-lactate regulates the expression of synaptic plasticity and neuroprotection genes in cortical neurons: a transcriptome analysis [J]. Front Mol Neurosci, 2018, 11: 375.
10
Pu J, Han J, Yang J, et al. Anaerobic glycolysis and ischemic stroke: from mechanisms and signaling pathways to natural product therapy [J]. ACS Chem Neurosci, 2024, 15(17): 3090-3105.
11
Brouns R, Sheorajpanday R, Wauters A, et al. Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA [J]. Clin Chim Acta, 2008, 397(1-2): 27-31.
12
Liu C, Huai R, Xiang Y, et al. High cerebrospinal fluid lactate concentration at 48 h of hospital admission predicts poor outcomes in patients with tuberculous meningitis: a multicenter retrospective cohort study [J]. Front Neurol, 2022, 13: 989832.
13
Kulik U, Moesta C, Spanel R, et al. Dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of primary nonfunction of fatty liver allografts [J]. Transl Res, 2024, 264: 33-65.
14
Zhang L, Xin C, Wang S, et al. Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle [J]. Sci Adv, 2024, 10(26): eadn4508.
15
Roosterman D, Cottrell GS. Astrocytes and neurons communicate via a monocarboxylic acid shuttle [J]. AIMS Neurosci, 2020, 7(2): 94-106.
16
Bak LK, Schousboe A. Misconceptions regarding basic thermodynamics and enzyme kinetics have led to erroneous conclusions regarding the metabolic importance of lactate dehydrogenase isoenzyme expression [J]. J Neurosci Res, 2017, 95(11): 2098-2102.
17
Knudsen GM, Paulson OB, Hertz MM. Kinetic analysis of the human blood-brain barrier transport of lactate and its influence by hypercapnia [J]. J Cereb Blood Flow Metab, 1991, 11(4): 581-586.
18
Leen WG, Willemsen MA, Wevers RA, et al. Cerebrospinal fluid glucose and lactate: age-specific reference values and implications for clinical practice [J]. PLoS One, 2012, 7(8): e42745.
19
Sakuma T, Mukai Y, Yamaguchi A, et al. Monocarboxylate transporters 1 and 2 are responsible for L-lactate uptake in differentiated human neuroblastoma SH-SY5Y cells [J]. Biol Pharm Bull, 2024, 47(4): 764-770.
20
Iwanaga T, Kishimoto A. Cellular distributions of monocarboxylate transporters: a review [J]. Biomed Res, 2015, 36(5): 279-301.
21
Sheng G, Gao Y, Wu H, et al. Functional heterogeneity of MCT1 and MCT4 in metabolic reprogramming affects osteosarcoma growth and metastasis [J]. J Orthop Surg Res, 2023, 18(1): 131.
22
Shi C, Xu J, Ding Y, et al. MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury [J]. Theranostics, 2024, 14(14): 5662-5681.
23
Peng Z, Li XJ, Pang C, et al. Hydrogen inhalation therapy regulates lactic acid metabolism following subarachnoid hemorrhage through the HIF-1α pathway [J]. Biochem Biophys Res Commun, 2023, 663: 192-201.
24
Verkhratsky A, Untiet V, Rose CR. Ionic signalling in astroglia beyond calcium [J]. J Physiol, 2020, 598(9): 1655-1670.
25
Dembitskaya Y, Piette C, Perez S, et al. Lactate supply overtakes glucose when neural computational and cognitive loads scale up [J]. Proc Natl Acad Sci U S A, 2022, 119(47): e2212004119.
26
Amaral AI, Teixeira AP, Håkonsen BI, et al. A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and C-labeled glucose [J]. Front Neuroenergetics, 2011, 3: 5.
27
Xiong XY, Pan XR, Luo XX, et al. Astrocyte-derived lactate aggravates brain injury of ischemic stroke in mice by promoting the formation of protein lactylation [J]. Theranostics, 2024, 14(11): 4297-4317.
28
Zhang W, Xu L, Yu Z, et al. Inhibition of the glycolysis prevents the cerebral infarction progression through decreasing the lactylation levels of LCP1 [J]. Mol Biotechnol, 2023, 65(8): 1336-1345.
29
Xu J, Ji T, Li G, et al. Lactate attenuates astrocytic inflammation by inhibiting ubiquitination and degradation of NDRG2 under oxygen-glucose deprivation conditions [J]. J Neuroinflammation, 2022, 19(1): 314.
30
Zhang D, Gao J, Zhu Z, et al. Lysine L-lactylation is the dominant lactylation isomer induced by glycolysis [J]. Nat Chem Biol, 2025, 21(1): 91-99.
31
Hirayama Y, Anzai N, Kinouchi H, et al. P2X7 receptors in astrocytes: a switch for ischemic tolerance [J]. Molecules, 2022, 27(12): 3655.
32
Zhang M, Wang Y, Bai Y, et al. Monocarboxylate transporter 1 may benefit cerebral ischemia via facilitating lactate transport from glial cells to neurons [J]. Front Neurol, 2022, 13: 781063.
33
Yu X, Zhang R, Wei C, et al. MCT2 overexpression promotes recovery of cognitive function by increasing mitochondrial biogenesis in a rat model of stroke [J]. Anim Cells Syst (Seoul), 2021, 25(2): 93-101.
34
Monsorno K, Buckinx A, Paolicelli RC. Microglial metabolic flexibility: emerging roles for lactate [J]. Trends Endocrinol Metab, 2022, 33(3): 186-195.
35
Lauro C, Limatola C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response [J]. Front Immunol, 2020, 11: 493.
36
Hu J, Cai M, Liu Y, et al. The roles of GRP81 as a metabolic sensor and inflammatory mediator [J]. J Cell Physiol, 2020, 235(12): 8938-8950.
37
Li L, Lai X, Ni Y, et al. The role of GPR81-cAMP-PKA pathway in endurance training-induced intramuscular triglyceride accumulation and mitochondrial content changes in rats [J]. J Physiol Sci, 2024, 74(1): 8.
38
Shang Q, Bian X, Zhu L, et al. Lactate mediates high-intensity interval training-induced promotion of hippocampal mitochondrial function through the GPR81-ERK1/2 pathway [J]. Antioxidants (Basel), 2023, 12(12): 2087.
39
Smith JS, Pack TF. Noncanonical interactions of G proteins and β-arrestins: from competitors to companions [J]. FEBS J, 2021, 288(8): 2550-2561.
40
Xiang Y, Wei X, Du P, et al. β-Arrestin-2-ERK1/2 cPLA2α axis mediates TLR4 signaling to influence eicosanoid induction in ischemic brain [J]. FASEB J, 2019, 33(5): 6584-6595.
41
Shen Z, Jiang L, Yuan Y, et al. Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury [J]. CNS Neurosci Ther, 2015, 21(3): 271-279.
42
Schurr A, Gozal E. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress [J]. Front Pharmacol, 2011, 2: 96.
43
Morland C, Lauritzen KH, Puchades M, et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain [J]. J Neurosci Res, 2015, 93(7): 1045-1055.
44
Nonaka M, Kanouchi H, Torii S, et al. Lactic acid induces HSPA1A expression through ERK1/2 activation [J]. Biosci Biotechnol Biochem, 2023, 87(2): 191-196.
45
Jourdain P, Rothenfusser K, Ben-Adiba C, et al. Dual action of L-lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection [J]. Sci Rep, 2018, 8(1): 13472.
46
Briquet M, Rocher AB, Alessandri M, et al. Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue [J]. J Cereb Blood Flow Metab, 2022, 42(9): 1650-1665.
47
Wu J, Lu L, Dai B, et al. Unraveling the role of LDHA and VEGFA in oxidative stress: a pathway to therapeutic interventions in cerebral aneurysms [J]. Biomol Biomed, 2025, 25(2): 360-374.
48
Yang X, Chen YH, Liu L, et al. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models [J]. Pharmacol Res, 2024, 208: 107357.
49
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation [J]. Nature, 2019, 574(7779): 575-580.
50
He C, Zhang J, Bai X, et al. Lysine lactylation-based insight to understanding the characterization of cervical cancer [J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(7): 167356.
51
Zhou J, Zhang L, Peng J, et al. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation [J]. Cell Metab, 2024, 36(9): 2054-2068.e14.
52
Berthet C, Lei H, Thevenet J, et al. Neuroprotective role of lactate after cerebral ischemia [J]. J Cereb Blood Flow Metab, 2009, 29(11): 1780-1789.
53
Cai M, Wang H, Song H, et al. Lactate is answerable for brain function and treating brain diseases: energy substrates and signal molecule [J]. Front Nutr, 2022, 9: 800901.
54
Castillo X, Rosafio K, Wyss MT, et al. A probable dual mode of action for both L- and D-lactate neuroprotection in cerebral ischemia [J]. J Cereb Blood Flow Metab, 2015, 35(10): 1561-1569.
[1] 许振琦, 彭烨, 易伟, 李珊珊, 王金锋, 何彪. 中心静脉-动脉血二氧化碳分压差与动脉-中心静脉血氧含量差比值及乳酸清除率在创伤性休克患者液体复苏中的价值探讨[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(03): 197-203.
[2] 马逸夫, 孙芳玲, 刘婷婷, 田欣, 王文. 神经干细胞永生化的机制及其应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 251-256.
[3] 韩秋霞, 朱晗玉, 段颖洁, 田明威, 朱凯怡, 马丽洁, 孙倩美. 维持性血液透析患者单核细胞/高密度脂蛋白胆固醇比值和血小板/高密度脂蛋白胆固醇比值与脑卒中风险的相关性[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 140-145.
[4] 张莉, 余双, 王宁利. 视网膜血管分形分析在青光眼和脑卒中患者中应用的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 141-148.
[5] 于帆, 迟冰玉, 朱紫嫣, 许光旭. 经皮耳迷走神经刺激治疗脑卒中后吞咽障碍的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 214-219.
[6] 刘佳成, 许晓辉, 杜艳姣, 张云亭, 段智慧. 载脂蛋白E基因多态性对急性缺血性脑卒中后抑郁的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 220-226.
[7] 荣毅, 田锦秀, 庞琦良, 成爱霞. 高频重复经颅磁刺激对脑卒中后中枢性疼痛的疗效观察[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 227-231.
[8] 王珊珊, 王文, 杨启亮, 张文朝, 崔宁宁, 李婷. 虚拟现实技术对脑卒中患者认知和负性情绪影响的Meta分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 161-170.
[9] 王永清, 马小花, 张晓玲, 张赛赛, 张娜丽. 老年脑卒中患者健康素养、社会支持与卒中复发风险感知的关系及其影响因素研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 180-186.
[10] 蒋岚, 陆萍. 乳酸、乳酸脱氢酶与白蛋白比值、内脏脂肪指数及全身免疫炎症指数对老年急性胰腺炎患者病情和预后的评估价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 334-339.
[11] 魏宁心, 何洁瑶. 急性上消化道出血患者三种系统评分及LAR、MHR比值变化对预后的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 364-369.
[12] 付志勇, 马欣, 董静, 杜祥颖, 尹春琳. 压力感受器分布动脉的粥样硬化总负荷对卒中后新监测到的心房颤动的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 175-183.
[13] 武德崴, 王秀玲, 郭呈龙, 褚研研, 高敬, 王宇彬, 尹春琳. CT肺动脉造影不可见的肺动静脉交通与心源性栓塞的关系[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 207-212.
[14] 马芬, 王保爱. 细胞间黏附分子-1与卒中的相关性研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 244-249.
[15] 黄虎, 宋春杰, 刘志伟, 陈兴, 朱发勇, 韩远远. 脑小血管病总负荷对急性前循环大血管闭塞梗死增长率及临床转归的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 141-148.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?