1 |
Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J]. Lancet Neurol, 2019, 18(5): 439-458.
|
2 |
Campbell BCV, Khatri P. Stroke [J]. Lancet, 2020, 396(10244): 129-142.
|
3 |
Daniele SG, Trummer G, Hossmann KA, et al. Brain vulnerability and viability after ischaemia [J]. Nat Rev Neurosci, 2021, 22(9): 553-572.
|
4 |
Campbell BCV, De Silva DA, Macleod MR, et al. Ischaemic stroke [J]. Nat Rev Dis Primers, 2019, 5(1): 70.
|
5 |
Chen M, Liu M, Luo Y, et al. Celastrol protects against cerebral ischemia/reperfusion injury in mice by inhibiting glycolysis through targeting HIF-1α/PDK1 axis [J]. Oxid Med Cell Longev, 2022, 2022: 7420507.
|
6 |
Tao T, Liu M, Chen M, et al. Natural medicine in neuroprotection for ischemic stroke: challenges and prospective [J]. Pharmacol Ther, 2020, 216: 107695.
|
7 |
Yu L, Tao J, Zhao Q, et al. Confirmation of potential neuroprotective effects of natural bioactive compounds from traditional medicinal herbs in cerebral ischemia treatment [J]. J Integr Neurosci, 2020, 19(2): 373-384.
|
8 |
吴筱霓, 刘伟, 何玉华, 等. 丹参酮ⅡA药理作用研究进展 [J]. 中国药业, 2020, 29(21): 93-97.
|
9 |
Su CY, Ming QL, Rahman K, et al. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology [J]. Chin J Nat Med, 2015, 13(3): 163-182.
|
10 |
Tang C, Xue H, Bai C, et al. The effects of Tanshinone ⅡA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats [J]. Phytomedicine, 2010, 17(14): 1145-1149.
|
11 |
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J]. Stroke, 1989, 20(1): 84-91.
|
12 |
Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats [J]. Stroke, 2001, 32(4): 1005-1011.
|
13 |
Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation [J]. Stroke, 1995, 26(4): 627-634; discussion 635.
|
14 |
Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development [J]. Stroke, 1999, 30(12): 2752-2758.
|
15 |
Wang L, Xiong X, Zhang X, et al. Sodium Tanshinone ⅡA sulfonate protects against cerebral ischemia-reperfusion injury by inhibiting autophagy and inflammation [J]. Neuroscience, 2020, 441: 46-57.
|
16 |
Cai M, Guo Y, Wang S, et al. Tanshinone ⅡA elicits neuroprotective effect through activating the nuclear factor erythroid 2-related factor-dependent antioxidant response [J]. Rejuvenation Res, 2017, 20(4): 286-297.
|
17 |
Chen Y, Wu X, Yu S, et al. Neuroprotection of Tanshinone ⅡA against cerebral ischemia/reperfusion injury through inhibition of macrophage migration inhibitory factor in rats [J]. PLoS One, 2012, 7(6): e40165.
|
18 |
Chen Y, Wu X, Yu S, et al. Neuroprotective capabilities of Tanshinone ⅡA against cerebral ischemia/reperfusion injury via anti-apoptotic pathway in rats [J]. Biol Pharm Bull, 2012, 35(2): 164-170.
|
19 |
Dong K, Xu W, Yang J, et al. Neuroprotective effects of Tanshinone ⅡA on permanent focal cerebral ischemia in mice [J]. Phytother Res, 2009, 23(5): 608-613.
|
20 |
Liu L, Zhang X, Wang L, et al. The neuroprotective effects of Tanshinone ⅡA are associated with induced nuclear translocation of TORC1 and upregulated expression of TORC1, pCREB and BDNF in the acute stage of ischemic stroke [J]. Brain Res Bull, 2010, 82(3-4): 228-233.
|
21 |
Li YH, Wang FY, Feng CQ, et al. Studies on the active constituents in radix salviae miltiorrhizae and their protective effects on cerebral ischemia reperfusion injury and its mechanism [J]. Pharmacogn Mag, 2015, 11(41): 69-73.
|
22 |
Tang Q, Han R, Xiao H, et al. Neuroprotective effects of Tanshinone ⅡA and/or tetramethylpyrazine in cerebral ischemic injury in vivo and in vitro [J]. Brain Res, 2012, 1488: 81-91.
|
23 |
Tang Q, Han R, Xiao HAN, et al. Protective effect of Tanshinone ⅡA on the brain and its therapeutic time window in rat models of cerebral ischemia-reperfusion [J]. Exp Ther Med, 2014, 8(5): 1616-1622.
|
24 |
Wang J, Ni G, Liu Y, et al. Tanshinone ⅡA promotes axonal regeneration in rats with focal cerebral ischemia through the inhibition of Nogo-A/NgR1/RhoA/ROCKII/MLC signaling [J]. Drug Des Devel Ther, 2020, 14: 2775-2787.
|
25 |
Wang L, Zhang X, Liu L, et al. Tanshinone Ⅱ A down-regulates HMGB1, RAGE, TLR4, NF-kappaB expression, ameliorates BBB permeability and endothelial cell function, and protects rat brains against focal ischemia [J]. Brain Res, 2010, 1321: 143-151.
|
26 |
Wen PY, Li J, Lu BL, et al. Tanshinone ⅡA increases levels of NeuN, protein disulfide isomerase, and Na+/K+-ATPase and decreases evidence of microglial activation after cerebral ischemic injury [J]. Neuroreport, 2016, 27(6): 435-444.
|
27 |
Yang L, Zhang B, Yin L, Cai B, et al. Tanshinone ⅡA prevented brain iron dyshomeostasis in cerebral ischemic rats [J]. Cell Physiol Biochem, 2011, 2011, 27(1): 23-30.
|
28 |
叶龙彬, 奚涛, 陈峰, 等. 丹参酮ⅡA对大鼠局灶性脑缺血再灌注损伤的保护作用 [J]. 中国药科大学学报, 2004, 35(3): 267-270.
|
29 |
Zhou ZY, Zhao WR, Zhang J, et al. Sodium Tanshinone ⅡA sulfonate: A review of pharmacological activity and pharmacokinetics [J]. Biomed Pharmacother, 2019, 118: 109362.
|
30 |
Chen L, Guo QH, Chang Y, et al. Tanshinone ⅡA ameliorated endothelial dysfunction in rats with chronic intermittent hypoxia [J]. Cardiovasc Pathol, 2017, 31: 47-53.
|
31 |
Li X, Wu Y, Zhang W, et al. Pre-conditioning with Tanshinone ⅡA attenuates the ischemia/reperfusion injury caused by liver grafts via regulation of HMGB1 in rat Kupffer cells [J]. Biomed Pharmacother, 2017, 89: 1392-400.
|
32 |
Lin L, Jadoon SS, Liu SZ, et al. TanshinoneⅡA ameliorates spatial learning and memory deficits by inhibiting the activity of ERK and GSK-3β [J]. J Geriatr Psychiatry Neurol, 2019, 32(3): 152-163.
|