1 |
Klein HU, McCabe C, Gjoneska E, et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains [J]. Nat Neurosci, 2019, 22(1): 37-46.
|
2 |
Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study [J]. Lancet Public Health, 2020, 5(12): e661-e671.
|
3 |
Cascella R, Cecchi C. Calcium dyshomeostasis in Alzheimer's disease pathogenesis [J]. Int J Mol Sci, 2021, 22(9): 4914.
|
4 |
Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease [J]. Curr Neuropharmacol, 2020, 18(11): 1106-1125.
|
5 |
Pascoal TA, Benedet AL, Ashton NJ, et al. Microglial activation and tau propagate jointly across Braak stages [J]. Nat Med, 2021, 27(9): 1592-1599.
|
6 |
Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [J]. Nature, 1997, 388(6640): 394-397.
|
7 |
Acioglu C, Heary RF, Elkabes S. Roles of neuronal toll-like receptors in neuropathic pain and central nervous system injuries and diseases [J]. Brain Behav Immun, 2022, 102: 163-178.
|
8 |
Anwar MA, Shah M, Kim J, et al. Recent clinical trends in Toll‐like receptor targeting therapeutics [J]. Med Res Rev, 2019, 39(3): 1053.
|
9 |
Owen AM, Fults JB, Patil NK, et al. TLR agonists as mediators of trained immunity: mechanistic insight and immunotherapeutic potential to combat infection [J]. Front Immunol, 2020, 11: 622614.
|
10 |
Miron J, Picard C, Frappier J, et al. TLR4 gene expression and pro-inflammatory cytokines in Alzheimer's disease and in response to hippocampal deafferentation in rodents [J]. J Alzheimers Dis, 2018, 63(4): 1547-1556.
|
11 |
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions [J]. Trends Pharmacol Sci, 2022, 43(9): 726-739.
|
12 |
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity [J]. Front Immunol, 2022, 13: 812774.
|
13 |
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions [J]. Trends Pharmacol Sci, 2022, 43(9): 726-739.
|
14 |
Fujikura M, Iwahara N, Hisahara S, et al. CD14 and Toll-like receptor 4 promote fibrillar Aβ42 uptake by microglia through a clathrin-mediated pathway [J]. J Alzheimers Dis, 2019, 68(1): 323-337.
|
15 |
Lu J, Zhang C, Lv J, et al. Antiallergic drug desloratadine as a selective antagonist of 5HT2A receptor ameliorates pathology of Alzheimer's disease model mice by improving microglial dysfunction [J]. Aging Cell, 2021, 20(1): e13286.
|
16 |
Yousefi N, Sotoodehnejadnematalahi F, Heshmati-Fakhr N, et al. Prestimulation of microglia through TLR4 pathway promotes interferon beta expression in a rat model of Alzheimer's disease [J]. J Mol Neurosci, 2019, 67(4): 495-503.
|
17 |
Miron J, Picard C, Lafaille-Magnan MÉ, et al. Association of TLR4 with Alzheimer's disease risk and presymptomatic biomarkers of inflammation [J]. Alzheimers Dement, 2019, 15(7): 951-960.
|
18 |
He Y, Ruganzu JB, Zheng Q, et al. Silencing of LRP1 exacerbates inflammatory response via TLR4/NF-κB/MAPKs signaling pathways in APP/PS1 transgenic mice [J]. Mol Neurobiol, 2020, 57(9): 3727-3743.
|
19 |
Cui W, Sun C, Ma Y, et al. Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer's disease [J]. Front Neurosci, 2020, 14: 444.
|
20 |
龙惠萍. TREM2基因在晚发型阿尔茨海默病 (LOAD)中介导炎症调节的机制研究 [D]. 南宁: 广西医科大学, 2020.
|
21 |
Jin X, Liu MY, Zhang DF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway [J]. CNS Neurosci Ther, 2019, 25(5): 575-590.
|
22 |
Muhammad T, Ikram M, Ullah R, et al. Hesperetin, a Citrus Flavonoid, attenuates LPS-Induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB Signaling [J]. Nutrients, 2019, 11(3): E648.
|
23 |
Yang L, Zhou R, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation [J]. Neurobiol Dis, 2020, 140: 104814.
|
24 |
Lourenco MV, Frozza RL, De Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models [J]. Nat Med, 2019, 25(1): 165-175.
|
25 |
Blackmore DG, Turpin F, Palliyaguru T, et al. Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling [J]. Mol Psychiatry, 2021, 26(11): 6975-6991.
|
26 |
Becker MFP, Tetzlaff C. The biophysical basis underlying the maintenance of early phase long-term potentiation [J]. PLoS Comput Biol, 2021, 17(3): e1008813.
|
27 |
Hughes C, Choi ML, Yi JH, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death [J]. Commun Biol, 2020, 3(1): 79.
|
28 |
Zhou Y, Song WM, Andhey PS, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease [J]. Nat Med, 2020, 26(1): 131-142.
|
29 |
Long H, Zhong G, Wang C, et al. TREM2 attenuates Aβ1-42-mediated neuroinflammation in BV-2 cells by downregulating TLR signaling [J]. Neurochem Res, 2019, 44(8): 1830-1839.
|
30 |
Lee CYD, Daggett A, Gu X, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer's disease models [J]. Neuron, 2018, 97(5): 1032-1048.e5.
|
31 |
Ren M, Zhang M, Zhang X, et al. Hydroxysafflor yellow A inhibits Aβ1-42-induced neuroinflammation by modulating the phenotypic transformation of microglia via TREM2/TLR4/NF-κB pathway in BV-2 cells [J]. Neurochem Res, 2022, 47(3): 748-761.
|
32 |
Zhou J, Yu W, Zhang M, et al. Imbalance of microglial TLR4/TREM2 in LPS-treated APP/PS1 transgenic mice: a potential link between Alzheimer's disease and systemic inflammation [J]. Neurochem Res, 2019, 44(5): 1138-1151.
|
33 |
Kuwar R, Rolfe A, Di L, et al. A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer's disease transgenic mice [J]. J Alzheimers Dis, 2021, 82(4): 1769-1783.
|
34 |
Feng YS, Tan ZX, Wu LY, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease [J]. Ageing Res Rev, 2020, 64: 101192.
|
35 |
Ising C, Venegas C, Zhang S, et al. NLRP3 inflammasome activation drives tau pathology [J]. Nature, 2019, 575(7784): 669-673.
|
36 |
Tejera D, Mercan D, Sanchez-Caro JM, et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome [J]. EMBO J, 2019, 38(17): e101064.
|
37 |
Zhang Y, Dong Z, Song W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer's disease [J]. Signal Transduct Target Ther, 2020, 5(1): 37.
|
38 |
Zhong X, Liu M, Yao W, et al. Epigallocatechin-3-Gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway [J]. Mol Nutr Food Res, 2019, 63(21): e1801230.
|
39 |
Liu Y, Dai Y, Li Q, et al. Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia [J]. Neurosci Lett, 2020, 736: 135279.
|
40 |
Yang J, Wise L, Fukuchi KI. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer's disease [J]. Front Immunol, 2020, 11: 724.
|
41 |
廖冬梅, 庞芳, 周敏, 等. 基于TLR4/NF-κB/NLRP3通路探讨电针对阿尔茨海默病小鼠认知障碍的影响 [J]. 针刺研究, 2022, 47(7): 565-572.
|
42 |
Guan PP, Cao LL, Wang P. Elevating the levels of calcium ions exacerbate Alzheimer's disease via inducing the production and aggregation of β-amyloid protein and phosphorylated Tau [J]. Int J Mol Sci, 2021, 22(11): 5900.
|
43 |
Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, et al. Role of Toll like receptor 4 in Alzheimer's disease [J]. Front Immunol, 2020, 11: 1588.
|
44 |
Calvo-Rodríguez M, De La Fuente C, García-Durillo M, et al. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons [J]. J Neuroinflammation, 2017, 14(1): 24.
|
45 |
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods [J]. J Cell Physiol, 2019, 234(5): 5451-5465.
|
46 |
Samadian M, Gholipour M, Hajiesmaeili M, et al. The eminent role of microRNAs in the pathogenesis of Alzheimer's disease [J]. Front Aging Neurosci, 2021, 13: 641080.
|
47 |
Bayraktar R, Bertilaccio MTS, Calin GA. The interaction between two worlds: microRNAs and Toll-like receptors [J]. Front Immunol, 2019, 10: 1053.
|
48 |
Mai H, Fan W, Wang Y, et al. Intranasal Administration of miR-146a Agomir rescued the pathological process and cognitive impairment in an AD mouse model [J]. Mol Ther Nucleic Acids, 2019, 18: 681-695.
|
49 |
Yang J, Malone F, Go M, et al. Lipopolysaccharide-Induced Exosomal miR-146a is involved in altered expression of Alzheimer's risk genes via suppression of TLR4 signaling [J]. J Mol Neurosci, 2021, 71(6): 1245-1255.
|
50 |
Wang M, Cao J, Gong C, et al. Exploring the microbiota-Alzheimer's disease linkage using short-term antibiotic treatment followed by fecal microbiota transplantation [J]. Brain Behav Immun, 2021, 96: 227-238.
|
51 |
Bruning EE, Coller JK, Wardill HR, et al. Site-specific contribution of Toll-like receptor 4 to intestinal homeostasis and inflammatory disease [J]. J Cell Physiol, 2021, 236(2): 877-888.
|
52 |
Keogh CE, Rude KM, Gareau MG. Role of pattern recognition receptors and the microbiota in neurological disorders [J]. J Physiol, 2021, 599(5): 1379-1389.
|
53 |
Liu S, Gao J, Zhu M, et al. Gut Microbiota and Dysbiosis in Alzheimer's disease: implications for pathogenesis and treatment [J]. Mol Neurobiol, 2020, 57(12): 5026-5043.
|
54 |
Lin C, Zhao S, Zhu Y, et al. Microbiota-gut-brain axis and Toll-like receptors in Alzheimer's disease [J]. Comput Struct Biotechnol J, 2019, 17: 1309-1317.
|
55 |
Yang X, Yu D, Xue L, et al. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice [J]. Acta Pharm Sin B, 2020, 10(3): 475-487.
|
56 |
Ye T, Yuan S, Kong Y, et al. Effect of probiotic fungi against cognitive impairment in mice via regulation of the fungal microbiota-gut-brain axis [J]. J Agric Food Chem, 2022, 70(29): 9026-9038.
|