切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 48 -52. doi: 10.11817/j.issn.1673-9248.2022.01.010

综述

神经血管单元在脑小血管病中的研究进展
洪靖舒1, 韩登阳1, 郭向阳1,()   
  1. 1. 100191 北京大学第三医院麻醉科
  • 收稿日期:2020-12-10 出版日期:2022-02-01
  • 通信作者: 郭向阳
  • 基金资助:
    国家自然科学基金面上项目(82071189)

Neurovascular unit in cerebral small vessel disease: an update review

Jingshu Hong1, Dengyang Han1, Xiangyang Guo1,()   

  1. 1. Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
  • Received:2020-12-10 Published:2022-02-01
  • Corresponding author: Xiangyang Guo
引用本文:

洪靖舒, 韩登阳, 郭向阳. 神经血管单元在脑小血管病中的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 48-52.

Jingshu Hong, Dengyang Han, Xiangyang Guo. Neurovascular unit in cerebral small vessel disease: an update review[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2022, 16(01): 48-52.

脑小血管病(CSVD)是指各种原因引发的脑小血管病变,并导致的一系列临床、影像学及病理改变的综合征。神经血管单元由神经元-胶质细胞-血管构成。近年来,随着对CSVD研究的不断深入,神经血管单元中不同细胞间的相互联系在CSVD中的作用也越来越受到关注。因此本文从神经血管单元角度阐明其各组成部分的相互作用在CSVD发生机制中的作用,为防范和治疗CSVD提供理论依据。

Cerebral small vessel disease (CSVD) is a disorder of cerebral small vessels caused by various reasons, resulting in a series of clinical, imaging and pathological changes. Neurovascular unit is composed by neurons-glial cells-cerebral blood vessels. In recent year, with the deeper understanding of CSVD pathogenesis, there has been an increasing interest in the role of the interaction among different components of neurovascular unit. Thus, this review comprehensively elucidates the role of the interaction among its components in the pathogenesis of CSVD, so as to provide theoretical basis for the prevention and treatment.

1
Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association [J]. Stroke, 2011, 42(9): 2672-2713.
2
王伊龙, 王拥军. 中国脑小血管病的临床研究优先发展战略规划 [J]. 中国卒中杂志, 2019, 14(11): 1075-1082.
3
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications [J]. Lancet Neurol, 2019, 18(7): 684-696.
4
Fisher CM. Lacunes: small, deep cerebral infarcts [J]. Neurology, 1965, 15: 774-784.
5
Iadecola C. The neurovascular unit coming of age: A Journey through Neurovascular Coupling in Health and Disease [J]. Neuron, 2017, 96(1): 17-42.
6
Zhang CE, Wong SM, van de Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease [J]. Neurology, 2017, 88(5): 426-432.
7
van Leijsen EMC, Bergkamp MI, van Uden IWM, et al. Progression of white matter hyperintensities preceded by heterogeneous decline of microstructural integrity [J]. Stroke, 2018, 49(6): 1386-1393.
8
Fernando MS, Simpson JE, Matthews F, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury [J]. Stroke, 2006, 37(6): 1391-1398.
9
Liu Q, Radwanski R, Babadjouni R, et al. Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood-brain barrier permeability in the corpus callosum [J]. J Cereb Blood Flow Metab, 2019, 39(2): 240-250.
10
Saggu R, Schumacher T, Gerich F, et al. Astroglial NF-κB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia [J]. Acta Neuropathol Commun, 2016, 4(1): 76.
11
Poggesi A, Pasi M, Pescini F, et al. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review [J]. J Cereb Blood Flow Metab, 2016, 36(1): 72-94.
12
Cuadrado-Godia E, Dwivedi P, Sharma S, et al. Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies [J]. J Stroke, 2018, 20(3): 302-320.
13
Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities [J]. Neurology, 2008, 71(11): 804-811.
14
Bailey EL, Smith C, Sudlow CL, et al. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review [J]. Int J Stroke, 2011, 6(5): 434-444.
15
Arai K, Lo EH. An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells [J]. J Neurosci, 2009, 29(14): 4351-4355.
16
Knowland D, Arac A, Sekiguchi KJ, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke [J]. Neuron, 2014, 82(3): 603-617.
17
Hoshi O, Ushiki T. Neutrophil extravasation in rat mesenteric venules induced by the chemotactic peptide N-formyl-methionyl-luecylphenylalanine (fMLP), with special attention to a barrier function of the vascular basal lamina for neutrophil migration [J]. Arch Histol Cytol, 2004, 67(1): 107-114.
18
Yao Y, Chen ZL, Norris EH, et al. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity [J]. Nat Commun, 2014, 5: 3413.
19
Gautam J, Miner JH, Yao Y. Loss of endothelial laminin α5 exacerbates hemorrhagic brain injury [J]. Transl Stroke Res, 2019, 10(6): 705-718.
20
Yang Y, Estrada EY, Thompson JF, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat [J]. J Cereb Blood Flow Metab, 2007, 27(4): 697-709.
21
Rosenberg GA. Extracellular matrix inflammation in vascular cognitive impairment and dementia [J]. Clin Sci (Lond), 2017, 131(6): 425-437.
22
Thal DR, Capetillo-Zarate E, Larionov S, et al. Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances [J]. Neurobiol Aging, 2009, 30(12): 1936-1948.
23
Majesky MW, Dong XR, Regan JN, et al. Vascular smooth muscle progenitor cells: building and repairing blood vessels [J]. Circ Res, 2011, 108(3): 365-377.
24
Chen ZL, Yao Y, Norris EH, et al. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke [J]. J Cell Biol, 2013, 202(2): 381-395.
25
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges [J]. Lancet Neurol, 2010, 9(7): 689-701.
26
Stevenson SF, Doubal FN, Shuler K, et al. A systematic review of dynamic cerebral and peripheral endothelial function in lacunar stroke versus controls [J]. Stroke, 2010, 41(6): e434-442.
27
Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging [J]. Lancet Neurol, 2013, 12(5): 483-497.
28
Bäck M, Yurdagul A, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities [J]. Nat Rev Cardiol, 2019, 16(7): 389-406.
29
Rustenhoven J, Jansson D, Smyth LC, et al. Brain pericytes as mediators of neuroinflammation [J]. Trends Pharmacol Sci, 2017, 38(3): 291-304.
30
Uemura MT, Ihara M, Maki T, et al. Pericyte-derived bone morphogenetic protein 4 underlies white matter damage after chronic hypoperfusion [J]. Brain Pathol, 2018, 28(4): 521-535.
31
Kim MS, Choi BR, Lee YW, et al. Chronic cerebral hypoperfusion induces alterations of matrix metalloproteinase-9 and angiopoietin-2 levels in the rat hippocampus [J]. Exp Neurobiol, 2018, 27(4): 299-308.
32
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis [J]. Nature, 2011, 473(7347): 298-307.
33
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology [J]. Acta Neuropathol, 2010, 119(1): 7-35.
34
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders [J]. Lancet Neurol, 2018, 17(11): 1016-1024.
35
Gao FL, Jing YH, Zang PX, et al. Vascular cognitive impairment caused by cerebral small vessel disease is associated with the TLR4 in the hippocampus [J]. J Alzheimers Dis, 2019, 70(2): 563-572.
36
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
37
Hase Y, Chen A, Bates LL, et al. Severe white matter astrocytopathy in CADASIL [J]. Brain Pathol, 2018, 28(6): 832-843.
38
Brown R, Benveniste H, Black SE, et al. Understanding the role of the perivascular space in cerebral small vessel disease [J]. Cardiovasc Res, 2018, 114(11): 1462-1473.
39
Doubal FN, MacLullich AM, Ferguson KJ, et al. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease [J]. Stroke, 2010, 41(3): 450-454.
40
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.
41
Rouhl RP, van Oostenbrugge RJ, Theunissen RO, et al. Autoantibodies against oxidized low-density lipoprotein in cerebral small vessel disease [J]. Stroke, 2010, 41(11): 2687-2689.
42
Aribisala BS, Wiseman S, Morris Z, et al. Circulating inflammatory markers are associated with magnetic resonance imaging-visible perivascular spaces but not directly with white matter hyperintensities [J]. Stroke, 2014, 45(2): 605-607.
43
Faraco G, Sugiyama Y, Lane D, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension [J]. J Clin Invest, 2016, 126(12): 4674-4689.
44
Kim SU, de Vellis J. Microglia in health and disease [J]. J Neurosci Res, 2005, 81(3): 302-313.
45
Kumar A, Alvarez-Croda DM, Stoica BA, et al. Microglial/macrophage polarization dynamics following traumatic brain injury [J]. J Neurotrauma, 2016, 33(19): 1732-1750.
46
Koizumi T, Taguchi K, Mizuta I, et al. Transiently proliferating perivascular microglia harbor M1 type and precede cerebrovascular changes in a chronic hypertension model [J]. J Neuroinflammation, 2019, 16(1): 79.
47
Guo S, Li ZZ, Jiang DS, et al. IRF4 is a novel mediator for neuronal survival in ischaemic stroke [J]. Cell Death Differ, 2014, 21(6): 888-903.
48
Sampaio TB, Savall AS, Gutierrez MEZ, et al. Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy [J]. Neural Regen Res, 2017, 12(4): 549-557.
49
Chen XJ, Chen XQ, Huang XJ, et al. Soluble epoxide hydrolase inhibition provides multi-target therapeutic effects in rats after spinal cord injury [J]. Mol Neurobiol, 2016, 53(3): 1565-1578.
50
Simpson JE, Ince PG, Higham CE, et al. Microglial activation in white matter lesions and nonlesional white matter of ageing brains [J]. Neuropathol Appl Neurobiol, 2007, 33(6): 670-683.
51
Davalos D, Ryu JK, Merlini M, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation [J]. Nat Commun, 2012, 3: 1227.
52
Nave KA, Werner HB. Myelination of the nervous system: mechanisms and functions [J]. Annu Rev Cell Dev Biol, 2014, 30: 503-533.
53
Shindo A, Liang AC, Maki T, et al. Subcortical ischemic vascular disease: roles of oligodendrocyte function in experimental models of subcortical white-matter injury [J]. J Cereb Blood Flow Metab, 2016, 36(1): 187-198.
54
Schmandke A, Schmandke A, Schwab ME. Nogo-A: multiple roles in CNS development, maintenance, and disease [J]. Neuroscientist, 2014, 20(4): 372-386.
55
Hinman JD, Lee MD, Tung S, et al. Molecular disorganization of axons adjacent to human lacunar infarcts [J]. Brain, 2015, 138(Pt 3): 736-745.
56
Hayakawa K, Pham LD, Katusic ZS, et al. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery [J]. Proc Natl Acad Sci U S A, 2012, 109(19): 7505-7510.
57
Seo JH, Miyamoto N, Hayakawa K, et al. Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury [J]. J Clin Invest, 2013, 123(2): 782-786.
[1] 郝昭昭, 李多, 南岩东. 以肺磨玻璃结节为表现的肺腺癌发生机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 435-437.
[2] 崔文兴, 葛顺楠, 屈延. 创伤性颅脑损伤后继发血管内皮细胞损伤机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 183-187.
[3] 常文轩, 王婷, 刘伟, 蓝天琦, 彭静, 汪诗瑶, 张晓鹏, 冯晨, 宫雪梅, 朱敏. 脑小血管病所致执行障碍的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 179-182.
[4] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[5] 丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣. 脑小血管病影像学标志物与运动障碍研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 429-434.
[6] 白明悦, 杨淑娜, 胡红梅, 胡文立. 透析患者脑小血管病患病情况的研究现状及其机制探讨[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 505-509.
[7] 晏美娟, 邵礼晖. 高水平脂蛋白(a)与无“三高”老年人群小动脉硬化型脑小血管病的相关性研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 458-463.
[8] 刘琳, 张奇山, 廖蔓倩, 陈余榕, 李倍, 何玉成, 唐圣桃. HTRA1相关常染色体显性脑小血管病家系报告并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 379-385.
[9] 王道合, 施媛媛. 8-iso-PGF2α及P选择素在评估脑小血管病患者认知功能中的价值[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 364-368.
[10] 胡红梅, 胡文立. 脑小血管病总负担评估量表的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 145-149.
[11] 李卓然, 胡文立. 内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 57-60.
[12] 张兴文, 侯磊, 冉晔, 田成林. 急性多发性缺血性脑小血管病10例临床分析[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 22-25.
[13] 刘欣, 王丽娟, 刘荧, 王爽, 徐绍红, 李小刚. 缺血性脑卒中后不同程度认知障碍危险因素及认知训练效果分析[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 314-319.
[14] 祁林瑞, 曾嵘, 胡风云. 炎性及代谢指标与脑小血管病认知障碍的相关性[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 32-37.
[15] 晏僖, 尚俊奎, 王凤羽, 秦晓明, 霍雪静, 刘锐杰, 邹金龙, 张杰文. 同型半胱氨酸及凝血-纤溶指标与脑小血管病的关系[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 27-31.
阅读次数
全文


摘要